Effect of Manifold Design on Flow Distribution in Parallel Micro-Channels

Author(s):  
Ralph L. Webb

Gas or liquid flow in multiple, parallel micro-channels is of interest for Micro-Electro-Mechanical Systems (MEMS) cooling applications. The published data for friction in 10-to-400μm hydraulic diameter, single micro-channels show good agreement with the conventional equations in the laminar and turbulent regimes. However, investigators of flow in multiple, parallel micro-channels in the same range of channel sizes report significantly different results. They report significant disagreement with the conventional equations and argue that transition occurs at Reynolds numbers as small as 200, dependent on the channel shape. This paper proposes that the apparent discrepancies of friction in multiple micro-channels can be attributed to flow mal-distribution. Flow mal-distribution is expected in multi-channels, because of manufacturing tolerances and poor manifold design. It can be minimized by proper header design and better manufacturing tolerances.

2011 ◽  
Vol 133 (5) ◽  
Author(s):  
Stephen A. Solovitz ◽  
Jeffrey Mainka

High-power electronic systems often require temperature uniformity for optimal performance. While many advanced cooling systems, such as micro-channels, result in significant heat removal, they are also susceptible to flow mal-distribution that can impact the local temperature variation on a device. By examining the pressure drops through each flow path in a multi-channel cooling system, an analytical model is predicted for the optimal manifold shape to produce uniform velocities. This is a simple power law, whose exponent depends on the flow regime in the manifold passages. The model is validated for laminar fully developed conditions using a series of computational simulations. With the power law design, the speeds in a parallel channel design are uniformly distributed at low Reynolds numbers, with a standard deviation of less than 3% of the overall mean channel speed. At higher Reynolds numbers, some mal-distribution is observed due to developing flow conditions, but it is not as significant as with typical untapered designs.


Author(s):  
Nevena D. Stevanovic

Gas flows take place in a number of micro-electro-mechanical systems (MEMS). Since the dimensions of the MEMS are within μm range, it is necessary to take into account the gas rarefaction effects in investigations of these flows. This paper presents the solution and analysis of isothermal compressible gas flow through micro channels with slow varying cross section under low Mach number conditions. The problem is solved by the introduction of the small parameter ε that presents the square of the Mach and Reynolds numbers ratio. Small parameter ε is used in a regular perturbation analysis of the problem. The exact dependence among Mach, Reynolds and Knudsen number is utilized, which leads to accurate prediction of the influence of the inertia forces and the slip boundary conditions.


1997 ◽  
Vol 119 (1) ◽  
pp. 59-65 ◽  
Author(s):  
F. Wilquem ◽  
G. Degrez

Two-dimensional steady inspiratory airflow through a three-generation model of the human central airways is numerically investigated, with dimensions corresponding to those encountered in the fifth to seventh generations of the Weibel’s model. Wall curvatures are added at the outer walls of the junctions for physiological purposes. Computations are carried out for Reynolds numbers in the mother branch ranging from 200 to 1200, which correspond to mouth air breathing at flow rates ranging from 0.27 to 1.63 liters per second. The difficulty of generating grids in a so complex configuration is overcome using a nonoverlapping multiblock technique. Simulations demonstrate the existence of separation regions whose number, location, and size strongly depend on the Reynolds number. Consequently, four different flow configurations are detected. Velocity profiles downstream of the bifurcations are shown to be highly skewed, thus leading to an important unbalance in the flow distribution between the medial and lateral branches of the model. These results confirm the observations of Snyder et al. and Tsuda et al. and suggest that a resistance model of flow partitioning based on Kirchhoff’s laws is inadequate to simulate the flow behavior accurately within the airways. When plotted in a Moody diagram, airway resistance throughout the model is shown to fit with a linear relation of slope −0.61. This is qualitatively in good agreement with the experimental investigations of Pedley et al. and Slutsky et al.


2015 ◽  
Vol 3 (2) ◽  
pp. 28-49
Author(s):  
Ridha Alwan Ahmed

       In this paper, the phenomena of vortex shedding from the circular cylinder surface has been studied at several Reynolds Numbers (40≤Re≤ 300).The 2D, unsteady, incompressible, Laminar flow, continuity and Navier Stokes equations have been solved numerically by using CFD Package FLUENT. In this package PISO algorithm is used in the pressure-velocity coupling.        The numerical grid is generated by using Gambit program. The velocity and pressure fields are obtained upstream and downstream of the cylinder at each time and it is also calculated the mean value of drag coefficient and value of lift coefficient .The results showed that the flow is strongly unsteady and unsymmetrical at Re>60. The results have been compared with the available experiments and a good agreement has been found between them


Fluids ◽  
2021 ◽  
Vol 6 (6) ◽  
pp. 215
Author(s):  
Paul McGinn ◽  
Daniel Pearce ◽  
Yannis Hardalupas ◽  
Alex Taylor ◽  
Konstantina Vogiatzaki

This paper provides new physical insight into the coupling between flow dynamics and cavitation bubble cloud behaviour at conditions relevant to both cavitation inception and the more complex phenomenon of flow “choking” using a multiphase compressible framework. Understanding the cavitation bubble cloud process and the parameters that determine its break-off frequency is important for control of phenomena such as structure vibration and erosion. Initially, the role of the pressure waves in the flow development is investigated. We highlight the differences between “physical” and “artificial” numerical waves by comparing cases with different boundary and differencing schemes. We analyse in detail the prediction of the coupling of flow and cavitation dynamics in a micro-channel 20 m high containing Diesel at pressure differences 7 MPa and 8.5 MPa, corresponding to cavitation inception and "choking" conditions respectively. The results have a very good agreement with experimental data and demonstrate that pressure wave dynamics, rather than the “re-entrant jet dynamics” suggested by previous studies, determine the characteristics of the bubble cloud dynamics under “choking” conditions.


2005 ◽  
Vol 128 (6) ◽  
pp. 557-563 ◽  
Author(s):  
Paul L. Sears ◽  
Libing Yang

Heat transfer coefficients were measured for a solution of surfactant drag-reducing additive in the entrance region of a uniformly heated horizontal cylindrical pipe with Reynolds numbers from 25,000 to 140,000 and temperatures from 30to70°C. In the absence of circumferential buoyancy effects, the measured Nusselt numbers were found to be in good agreement with theoretical results for laminar flow. Buoyancy effects, manifested as substantially higher Nusselt numbers, were seen in experiments carried out at high heat flux.


Author(s):  
Anil K. Tolpadi ◽  
Michael E. Crawford

The heat transfer and aerodynamic performance of turbine airfoils are greatly influenced by the gas side surface finish. In order to operate at higher efficiencies and to have reduced cooling requirements, airfoil designs require better surface finishing processes to create smoother surfaces. In this paper, three different cast airfoils were analyzed: the first airfoil was grit blasted and codep coated, the second airfoil was tumbled and aluminide coated, and the third airfoil was polished further. Each of these airfoils had different levels of roughness. The TEXSTAN boundary layer code was used to make predictions of the heat transfer along both the pressure and suction sides of all three airfoils. These predictions have been compared to corresponding heat transfer data reported earlier by Abuaf et al. (1997). The data were obtained over a wide range of Reynolds numbers simulating typical aircraft engine conditions. A three-parameter full-cone based roughness model was implemented in TEXSTAN and used for the predictions. The three parameters were the centerline average roughness, the cone height and the cone-to-cone pitch. The heat transfer coefficient predictions indicated good agreement with the data over most Reynolds numbers and for all airfoils-both pressure and suction sides. The transition location on the pressure side was well predicted for all airfoils; on the suction side, transition was well predicted at the higher Reynolds numbers but was computed to be somewhat early at the lower Reynolds numbers. Also, at lower Reynolds numbers, the heat transfer coefficients were not in very good agreement with the data on the suction side.


1989 ◽  
Vol 172 ◽  
Author(s):  
T. S. Aurora ◽  
D. O. Pederson ◽  
S. M. Day

AbstractLinear thermal expansion and refractive index variation have been measured in lead fluoride with a laser interferometer as a function of temperature. Data has been analyzed using the Lorentz-Lorenz relation. Molecular polarizability, band gap, variation of refractive index with density, and strain-polarizability parameter have been studied as a function of temperature. They exhibit a small variation with temperature except near the superionic phase transition where the variation appears to be more pronounced. The results are in good agreement with the published data near room temperature.


1961 ◽  
Vol 14 (4) ◽  
pp. 598 ◽  
Author(s):  
EJ Williams

Though randomly moving insects released from a central point in a uniform environment are often found to be distributed according to a circular normal distribution, their larvae will not conform to this distribution. When such insects lay at a constant rate and are subject to constant mortality, their larvae are found to be spatially distributed according to a highly peaked frequency function, depending on the modified Bessel function of the second kind. This theoretical conclusion is in good agreement with published data. Some of the properties of the theoretical distribution are discussed.


Author(s):  
Sandra Velarde-Sua´rez ◽  
Rafael Ballesteros-Tajadura ◽  
Jose´ Gonza´lez-Pe´rez ◽  
Bruno Pereiras-Garci´a

In this work, a numerical simulation on the main flow features in a squirrel-cage fan, used in automotive air conditioning units, has been carried out. A 3D unsteady model has been developed for the entire machine. The flow in this geometrical model has been solved using the commercial code FLUENT®. Some of the analyzed features are the performance curves, the flow distribution over the different aspiration sections, the pressure and velocity distributions in selected surfaces, and the forces on the blades and on the whole impeller. The numerical results have been compared with the available experimental data, showing a reasonable good agreement.


Sign in / Sign up

Export Citation Format

Share Document