Characterization of Doped SAC Solder Materials and Determination of Anand Parameters

Author(s):  
Sudan Ahmed ◽  
Munshi Basit ◽  
Jeffrey C. Suhling ◽  
Pradeep Lall

In the electronic packaging industry, it is important to be able to make accurate predictions of board level solder joint reliability during thermal cycling exposures. The Anand viscoelastic constitutive model is often used to represent the material behavior of the solder in finite element simulations. This model is defined using nine material parameters, and the reliability prediction results are often highly sensitive to the Anand parameters. In present work, three new doped lead free solder materials recommended for high reliability applications have been chemically analyzed and then mechanically tested in order to determine the nine Anand parameters. The alloys are referred to as Ecolloy (SAC_R), CYCLOMAX (SAC_Q), and Innolot by their vendors. The first two doped alloys (SAC_R and SAC_Q) were found to be composed of Sn, Ag, Cu, and a single X-element dopant. Such solders are commonly referred to as SAC-X in the literature. For the third material (Innolot), three different dopants are present along with Sn, Ag and Cu. The EDX method was used to determine the approximate chemical composition of the materials, and Bismuth (Bi) was found to be the X-additive for both SAC_R and SAC_Q. In addition, the SAC_R material was found to have no silver (Ag), which is the reason it is marketed as a low cost (economy) material. The nine Anand parameters were determined for each unique solder alloy from a set of uniaxial tensile tests performed at several strain rates and temperatures. Testing conditions included strain rates of 0.001, 0.0001, and 0.00001 (sec−1), and temperatures of 25, 50, 75, 100, and 125 C. The Anand parameters were calculated from each set of stress-strain data using an established procedure that is described in detail in the paper. The mechanical properties and the values of Anand parameters for these new doped alloys were compared with those for standard SAC105 and SAC405 lead free alloys. Although the SAC_R material does not have any silver, it was shown to have better mechanical behavior than SAC105 due to the presence of Bismuth (Bi) along with a little higher percentage of Copper (Cu). The SAC_Q and Innolot materials were shown to have significantly higher strength than SAC405. After deriving the Anand parameters for each alloy, the stress-strain curves have been calculated for various conditions, and excellent agreement was found between the predicted results and experimental stress-strain curves.

Author(s):  
Munshi Basit ◽  
Mohammad Motalab ◽  
Jeffrey C. Suhling ◽  
Pradeep Lall

In the electronic packaging industry, it is important to be able to make accurate predictions of board level solder joint reliability during thermal cycling exposures. The Anand viscoplastic constitutive model is often used to represent the material behavior of the solder in finite element simulations. This model is defined using nine material parameters, and the reliability prediction results are often highly sensitive to the Anand parameters. In this work, an investigation on the Anand constitutive model and its application to SAC solders of various Ag contents (i.e. SACN05, with N = 1, 2, 3, 4) has been performed. For each alloy, both water quenched (WQ) and reflowed (RF) solidification profiles were utilized to establish two unique specimen microstructures, and the same reflow profile was used for all four of the SAC alloys so that the results could be compared and the effects of Ag content could be studied systematically. In addition, we have performed tensile testing on reflowed specimens subjected to 6 months of aging at 100 C. After this level of aging, any further changes in the mechanical response and properties will be rather small. Thus, the results for these tests can be regarded as approaching the highest level of mechanical behavior degradation possible for a “severely aged” lead free solder material. The nine Anand parameters were determined for each unique solder alloy and microstructure from a set of stress strain tests performed at several strain rates and temperatures. Testing conditions included strain rates of 0.001, 0.0001, and 0.00001 (sec−1), and temperatures of 25, 50, 75, 100, and 125 C. As expected, the mechanical properties (modulus and strength) increase with the percentage of Ag content, and these changes strongly affect the Anand parameters. The sensitivity of the mechanical properties and Anand parameters to silver content is higher at lower silver percentages (1–2%). Also, the observed mechanical properties of water quenched samples were better (higher in magnitude) than the corresponding mechanical properties of the reflowed samples. Although the differences in elastic modulus between the water quenched and reflowed samples are relatively small, significant differences are present for the yield and ultimate tensile stresses of all four SAC alloys. The changes in the Anand model parameters after severe aging (6 months at 100 °C) were significant. The measured experimental results have been used to illustrate the range of values possible for Anand parameters for the SACN05 alloys. The upper extreme was the water quenched limit, where the materials have extremely fine microstructures and high mechanical properties. The lower extreme was the severely aged limit, where the materials have extremely coarsened microstructures and highly degraded mechanical properties. While further degradations are certainly possible with even further aging, the limiting values found for a severely aged SAC alloy can be used by designers as a conservative set of constitutive parameters representing the lower end of the material properties for that alloy. After deriving the Anand parameters for each alloy and microstructure, the stress-strain curves have been calculated for various conditions, and excellent agreement was found between the predicted results and experimental stress-strain curves.


Author(s):  
Munshi Basit ◽  
Mohammad Motalab ◽  
Jeffrey C. Suhling ◽  
John L. Evans ◽  
Pradeep Lall

The microstructure, mechanical response, and failure behavior of lead free solder joints in electronic assemblies are constantly evolving when exposed to isothermal aging and/or thermal cycling environments. In our prior work on aging effects, we have demonstrated that the observed material behavior degradations of Sn-Ag-Cu (SAC) lead free solders during room temperature aging (25 C) and elevated temperature aging (50, 75, 100, 125, and 150 C) were unexpectedly large. The measured stress-strain data demonstrated large reductions in stiffness, yield stress, ultimate strength, and strain to failure (up to 50%) during the first 6 months after reflow solidification. In this study, we have used both accelerated life testing and finite element modeling to explore how prior isothermal aging affects the overall reliability of PBGA packages subjected to thermal cycling. In the experimental work, an extensive test matrix of thermal cycling reliability testing has been performed using a test vehicle incorporating several sizes (5, 10, 15, 19 mm) of BGA daisy chain components with 0.4 and 0.8 mm solder joint pitches (SAC305). PCB test boards with 3 different surface finishes (ImAg, ENIG and ENEPIG) were utilized. In this paper, we concentrate on the reporting the results for a PBGA component with 15 mm body size. Before thermal cycling began, the assembled test boards were divided up into test groups that were subjected to several sets of aging conditions (preconditioning) including 0, 6, and 12 months aging at T = 125 °C. After aging, the assemblies were subjected to thermal cycling (−40 to +125 °C) until failure occurred. The Weibull data failure plots have demonstrated that the thermal cycling reliabilities of pre-aged assemblies were significantly less than those of non-aged assemblies. A three-dimensional finite element model of the tested 15 mm PBGA packages was also developed. The cross-sectional details of the solder ball and the internal structure of the BGA were examined by scanning electron microscopy (SEM) to capture the real geometry of the package. Simulations of thermal cycling from −40 to 125 C were performed. To include the effects of aging in the calculations, we have used a revised set of Anand viscoplastic stress-strain relations for the SAC305 Pb-free solder material that includes material parameters that evolve with the thermal history of the solder material. The accumulated plastic work (energy density dissipation) was used is the failure variable; and the Darveaux approach to predict crack initiation and crack growth was applied with aging dependent parameters to estimate the fatigue lives of the studied packages. We have obtained good correlation between our new reliability modeling procedure that includes aging and the measured solder joint reliability data. As expected from our prior studies on degradation of SAC material properties with aging, the reliability reductions were more severe for higher aging temperature and longer aging times.


Author(s):  
Pradeep Lall ◽  
Vikas Yadav ◽  
Jeff Suhling ◽  
David Locker

Abstract Electronic components in downhole oil drilling and gas industry applications, automotive and avionics may exposed to high temperatures (> 150°C) and high strain rates (1–100 per sec) during storage, operation and handling which can contribute to the failures of electronics devices. Temperatures in these applications can exceed 200°C, which is closed to melting point for SAC alloys. The microstructure for lead free solder alloys constantly evolves when subjected to thermal aging for sustained periods with accompanying degradation in mechanical properties of solder alloys. In this paper, evolution of microstructure and Anand parameters for unaged and aged SAC (SAC105 and SAC-Q) lead free solder alloys at high strain rates has been investigated induced due to thermal aging. The microstructure of the SAC solder is studied using scanning electron microscopy (SEM) for different strain rate and elevating temperature. The thermal aged leadfree SAC solder alloys specimen has been tested at high strain rates (10–75 per sec) at elevated temperatures of (25°C–200°C). The SAC leadfree solder samples were subjected to isothermal aging at 50°C up to 1-year before testing. To describe the material constitutive behavior, Anand Viscoplastic model has been used. Effect of thermal aging on Anand parameters has been investigated. In order to verify the accuracy of the model, the computed Anand parameters have been used to simulate the uniaxial tensile test. FEA based method has been used to simulate the drop events using Anand constitutive model. Hysteresis loop and Plastic work density has been computed from FEA.


Author(s):  
Kok Ee Tan ◽  
John H. L. Pang

In this paper, the strain-rate dependent mechanical properties and stress-strain curve behavior of Sn3.8Ag0.7Cu (SAC387) solder is presented for a range of strain-rates at room temperature. The apparent elastic modulus, yield stress properties and stress-strain curve equation of the solder material is needed to facilitate finite element modeling work. Tensile tests on dog-bone shaped bulk solder specimens were conducted using a non-contact video extensometer system. Constant strain-rate uni-axial tensile tests were conducted over the strain-rates of 0.001, 0.01, 0.1 and 1 (s−1) at 25°C. The effects of strain-rate on the stress-strain behavior for lead-free Sn3.8Ag0.7Cu solder are presented. The tensile yield stress results were compared to equivalent yield stress values derived from nano-indentation hardness test results. Constitutive models based on the Ramberg-Osgood model and the Cowper-Symond model were fitted for the tensile test results to describe the elastic-plastic behavior of solder deformation behavior.


2017 ◽  
Vol 29 (2) ◽  
pp. 110-117 ◽  
Author(s):  
Izhan Abdullah ◽  
Muhammad Nubli Zulkifli ◽  
Azman Jalar ◽  
Roslina Ismail

Purpose The purpose of this paper is to investigate the relationship between microstructure and varied strain rates towards the mechanical properties and deformation behaviour of Sn-3.0Ag-0.5Cu (SAC305) lead-free solder wire at room temperature. Design/methodology/approach Tensile tests with different strain rates of 1.5 × 10−6, 1.5 × 10−5, 1.5 × 10−4, 1.5 × 10−3, 1.5 × 10−2 and 1.5 × 10−1 s−1 at room temperature of 25°C were carried out on lead-free Sn-3.0Ag-0.5Cu (SAC305) solder wire. Stress-strain curves and mechanical properties such as yield strength, ultimate tensile strength and elongation were determined from the tensile tests. A microstructure analysis was performed by measuring the average grain size and the aspect ratio of the grains. Findings It was observed that higher strain rates showed pronounced dynamic recrystallization on the stress-strain curve. The increase in the strain rates also decreased the grain size of the SAC305 solder wire. It was found that higher strain rates had a pronounced effect on changing the deformation or shape of the grain in a longitudinal direction. An increase in the strain rates increased the tensile strength and ductility of the SAC solder wire. The primary deformation mechanism for strain rates below 1.5 × 10−1 s−1 was grain boundary sliding, whereas the deformation mechanism for strain rates of 1.5 × 10−1 s−1 was diffusional creep. Originality/value Most of the studies regarding the deformation behaviour of lead-free solder usually consider the effect of the elevated temperature. For the current analysis, the effect of the temperature is kept constant at room temperature to analyze the deformation of lead-free solder wire solely because of changes of strain rates, and this is the originality of this paper.


2019 ◽  
Vol 52 (4) ◽  
pp. 285-303
Author(s):  
E Aligholizadeh ◽  
M Yazdani ◽  
H Sabouri

This article presents a new model developed to investigate hyperviscoelastic behavior of elastomeric materials/polyolefin elastomers (HDPE/POE blend) under dynamic biaxial and uniaxial tensile loading. Various strain energy functions (SEF) have been used in this model, and their capability to predict hyperelastic behavior of the aforementioned materials was validated by experimental data. In the experimental part, a new dynamic tensile-loading mechanism was designed and developed to be mounted on a drop-weight impact-testing machine. As a novelty, this mechanism has the ability to perform either uniaxial or biaxial dynamic tensile tests for any type of material, especially for investigating the hyperviscoelastic behavior of materials like elastomers at various strain rates. In addition, a new hyperviscoelastic model has been developed for elastomeric material, which can predict the behavior of the material well at different strain rates. By increasing the strain rate in the dynamic biaxial and uniaxial loading, Pucci–Saccomandi and Yeoh SEF predicted the dynamic behavior of material well due to its lower root mean square error. In fact, in this case, these functions are more capable than Mooney–Rivlin, Neo-Hookean, and polynomial SEF in predicting the effect of the strain rates. In addition, the results show that Yeoh SEF performs much better than the other SEFs in predicting the material behavior in cases of dynamic biaxial and uniaxial tensile strain. The results also indicated that the newly designed mechanism was capable of performing dynamic tensile loading and extracting its accurate results and could reduce the cost of testing compared to other methods.


2021 ◽  
Vol 40 (1) ◽  
pp. 310-324
Author(s):  
Ying Tong ◽  
Jiang Zhao ◽  
Guo-zheng Quan

Abstract Understanding the damage evolution of alloys during a plastic deformation process is significant to the structural design of components and accident prevention. In order to visualize the damage evolution in the plastic deformation of Ti–3Al–2Mo–2Zr alloy, a series of uniaxial tensile experiments for this alloy were carried out under the strain rates of 0.1–10 s−1 at room temperature, and the stress–strain curves were achieved. On the other hand, the finite element (FE) models of these uniaxial tensile processes were established. A microvoids proliferation model, Gurson–Tvergaard–Needleman (GTN) damage model, was implanted into the uniaxial tensile models, and the simulated stress–strain curves corresponding to different GTN parameter combinations were obtained. Based on the simulated and experimental stress–strain curves, the GTN parameters of this alloy were solved by response surface methodology (RSM). The solved GTN parameters suggest that higher strain rate can enhance the proliferation and coalescence of microvoids. Furthermore, the uniaxial tensile tests over different strain rates were simulated using the solved GTN parameters. Then, the damage processes were visualized and evaluated. The result shows that the degradation speed of this alloy is slow at the initial stage of the tensile deformation and then accelerates once the voids volume fraction reaches a critical value.


2011 ◽  
Vol 133 (4) ◽  
Author(s):  
Etienne L. Bonnaud

Reliable drop test simulations of electronic packages require reliable material characterization of solder joints. Mechanical properties of lead-free solder were here experimentally investigated for both monotonic and cyclic loading at different strain rates. With regards to the observed complex material behavior, the nonlinear mixed hardening Armstrong and Frederick model combined with the Perzyna viscoplastic law was chosen to fit the experimental data. This model was subsequently implemented into a commercial finite element code and used to simulate drop tests. Actual drop test experiments were conducted in parallel and experimental results were compared to simulations. Prediction discrepancies were analyzed and explanations suggested.


Metals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 42
Author(s):  
Shuguang Qu ◽  
Heli Peng ◽  
Zhubin He ◽  
Kailun Zheng ◽  
Jinghua Zheng

The precise characterisation of hot flow behavior of titanium alloys is of vital importance for practical hot forming processes. To precisely determine the hot flow behavior of titanium alloys under the forming conditions, Gleeble hot tensile tests are usually performed to simulate the forming processes by accurately controlling the deformation temperatures and strain rates under designed conditions. However, there exists a non-uniform temperature distribution during the Gleeble tests, which leads to inaccuracies in the determined hot flow behavior. To overcome such an issue, this paper proposed a new strain-based correction method for Gleeble hot tensile tests, enabling the mitigation of the non-uniform temperature-induced stress-strain curve inaccuracies. The non-uniform temperature zones have been successfully excluded in the calculation of the true strain levels. A series of hot uniaxial tensile tests of TA32 at temperatures, ranging from 750 °C to 900 °C, and strain rates, 0.01/s~1/s, were carried out. The obtained stress-strain correlations for a large gauge zone were characterized using the new correction method, which was further used to evaluate the hardening behavior of titanium alloys. The results have shown that the ductility, strain hardening component (i.e., n), strain rate hardening component (i.e., m) and uniform strain value (i.e., ) are over-estimated, compared to conventional method. Higher strain rates and lower temperature leads to enhanced hardening behavior. This research provides an alternative correction method and may achieve more accurate stress-strain curves for better guidance of the hot forming process for titanium alloys.


Sign in / Sign up

Export Citation Format

Share Document