Modeling the Reflow Soldering Process in PCB’s

Author(s):  
João Costa ◽  
Delfim Soares ◽  
Senhorinha F. Teixeira ◽  
Fátima Cerqueira ◽  
Francisco Macedo ◽  
...  

In the present work two different types of case studies are modelled, carried out involving the fusing of a material using the CFD (Computational Fluid Dynamics) software Ansys Fluent, using the VOF method (Volume of Fluid) to capture the position of the existing interfaces and the Solidification/melting method which uses an enthalpy-porosity approach to simulate the fusion of the material. The first case focus itself in the analysis of fusing process and dropping behavior of the melted plate in the presence of a thermal source. The validation is made using a study found in the bibliography and then using water as the melting material given that its behavior is well known. Then tin is used as the melting material followed by the use of SAC 405 as the melting plate. This study compares various materials properties and verifies the influence of some of these particular properties by changing them (surface tension and heat of fusion). The second case focus on the simulation of a geometry obtained at balance at a constant temperature by the SAC 405 soldering alloy in the presence of a component and the copper substrate on top of a PCB.

2008 ◽  
Vol 59 (9) ◽  
Author(s):  
Eugenia Pantru ◽  
Gheorghit Jinescu ◽  
Rozalia R�dulescu ◽  
Antoneta Filcenco Olteanu ◽  
Cosmin Jinescu

This paper presents an intensive procedure used for the decontamination of the soils, which were radioactively contaminated by uranium, due to the occurrence of some antropic accidents, in order to limit the area�s pollution. The procedure used for the chemical decontamination of the polluted soils was the washing one and the decontamination degree is comparatively presented depending on the ultrasounds� presence and absence. The lab testes were performed on five types of soils , which were characterized from the granulometric, structural and chemical composition viewpoint, all these aspects represent the main factors, which determine the applied decontamination procedure�s limits and performances correlated with its utilization costs. The decontamination procedure�s kinetics for each type of soils was analyzed, using successively three different types of reagents (water, 0.1 M sulphuric acid solution and chloro-sodic solution � 100 g/L sodium chloride + 10 g/L sodium carbonate in water) for a solid to liquid ratio of 1:2, during 2 h, at a temperature of 20oC in a mechanic stirring system respectively in ultrasounds field. It was observed that the decontamination degree increases with up to 15-20% in case of the ultrasound field utilization comparing to the first case.


1946 ◽  
Vol 19 (4) ◽  
pp. 1085-1087
Author(s):  
Pierre Girard ◽  
Paul Abadie

Abstract The spectra which were studied lie within the region of hertzian frequencies, and can be represented either by dispersion curves showing the dielectric constant of the substance as a function of the frequency (or wave length λ), or by absorption curves showing the loss angle as a function of this frequency. These two types of curves represent the same phenomenon, i.e., orientation of the dipolar molecules in the alternating electric field, in accordance with the theory of Debye. The spectra and their interpretation depend chiefly on whether the molecules are crystalloid with relatively small and similar dimensions, or are colloidal, with large and unequal dimensions. In the first case, the spectra gives evidence chiefly on the form of the molecules and their structural features. Dilution in a nonpolar solvent shows for certain dipolar compounds, e.g., alcohol, considerable deformations, which differ according to the solvent. In the case of colloids, e.g., rubber, which has a permanent moment, the spectra and the meaning of these spectra are far different. In this case the spectra indicate that the absorption and dispersion values in the hertzian region are closely related to the micellar constitution, i.e., to the different types of micelles, to their size, and to the proportion of each type.


2019 ◽  
Vol 28 (01) ◽  
pp. 1950022 ◽  
Author(s):  
Yousef Bisabr

We consider a generalized Brans–Dicke model in which the scalar field has a self-interacting potential function. The scalar field is also allowed to couple nonminimally with the matter part. We assume that it has a chameleon behavior in the sense that it acquires a density-dependent effective mass. We consider two different types of matter systems which couple with the chameleon, dust and vacuum. In the first case, we find a set of exact solutions when the potential has an exponential form. In the second case, we find a power-law exact solution for the scale factor. In this case, we will show that the vacuum density decays during expansion due to coupling with the chameleon.


2019 ◽  
Vol 16 (2) ◽  
pp. 91-102
Author(s):  
Lars Bruno ◽  
Benny Gustafson

Abstract Both the number and the variants of ball grid array packages (BGAs) are tending to increase on network printed board assemblies with sizes ranging from a few millimeter die size wafer level packages with low ball count to large multidie system-in-package (SiP) BGAs with 60–70 mm side lengths and thousands of I/Os. One big challenge, especially for large BGAs, SiPs, and for thin fine-pitch BGA assemblies, is the dynamic warpage during the reflow soldering process. This warpage could lead to solder balls losing contact with the solder paste and its flux during parts of the soldering process, and this may result in solder joints with irregular shapes, indicating poor or no coalescence between the added solder and the BGA balls. This defect is called head-on-pillow (HoP) and is a failure type that is difficult to determine. In this study, x-ray inspection was used as a first step to find deliberately induced HoP defects, followed by prying off of the BGAs to verify real HoP defects and the fault detection correlation between the two methods. The result clearly shows that many of the solder joints classified as potential HoP defects in the x-ray analysis have no evidence at all of HoP after pry-off. This illustrates the difficulty of determining where to draw the line between pass and fail for HoP defects when using x-ray inspection.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Elwin Heng ◽  
Mohd Zulkifly Abdullah

Purpose This paper focuses on the fluid-structure interaction (FSI) analysis of moisture induced stress for the flip chip ball grid array (FCBGA) package with hydrophobic and hydrophilic materials during the reflow soldering process. The purpose of this paper is to analyze the influence of moisture concentration and FCBGA with hydrophobic material on induced pressure and stress in the package at varies times. Design/methodology/approach The present study analyzed the warpage deformation during the reflow process via visual inspection machine (complied to Joint Electron Device Engineering Council standard) and FSI simulation by using ANSYS/FLUENT package. The direct concentration approach is used to model moisture diffusion and ANSYS is used to predict the Von-Misses stress. Models of Test Vehicle 1 (similar to Xie et al., 2009b) and Test Vehicle 2 (FCBGA package) with the combination of hydrophobic and hydrophilic materials are performed. The simulation for different moisture concentrations with reflows process time has been conducted. Findings The results from the mechanical reliability study indicate that the FSI analysis is found to be in good agreement with the published study and acceptable agreement with the experimental result. The maximum Von-Misses stress induced by the moisture significantly increased on FCBGA with hydrophobic material compared to FCBGA with a hydrophilic material. The presence of hydrophobic material that hinders the moisture desorption process. The analysis also illustrated the moisture could very possibly reside in electronic packaging and developed beyond saturated vapor into superheated vapor or compressed liquid, which exposed electronic packaging to higher stresses. Practical implications The findings provide valuable guidelines and references to engineers and packaging designers during the reflow soldering process in the microelectronics industry. Originality/value Studies on the influence of moisture concentration and hydrophobic material are still limited and studies on FCBGA package warpage under reflow process involving the effect of hydrophobic and hydrophilic materials are rarely reported. Thus, this study is important to effectively bridge the research gap and yield appropriate guidelines in the microelectronics industry.


Author(s):  
Flávia V. Barbosa ◽  
João P. V. Silva ◽  
Senhorinha F. C. Teixeira ◽  
Delfim F. Soares ◽  
Duarte N. F. Santos ◽  
...  

2019 ◽  
Vol 2019 (1) ◽  
pp. 000509-000514
Author(s):  
Reinhard Schemmel ◽  
Florian Eacock ◽  
Collin Dymel ◽  
Tobias Hemsel ◽  
Matthias Hunstig ◽  
...  

Abstract Ultrasonic joining is a common industrial process. To build electrical connections in the electronics industry, uni-axial and torsional ultrasonic vibration have been used to join different types of workpieces for decades. Many influencing factors like ultrasonic power, bond normal force, bond duration and frequency are known to have a high impact on bond quality and reliability. Multi-dimensional bonding has been investigated in the past to increase ultrasonic power and consequently bond strength. This contribution is focused on the comparison of circular, multi-frequency planar and uniaxial vibration trajectories used for ultrasonic bonding of copper pins on copper substrate. Bond quality was analyzed by shear tests, scanning acoustic microscopy and interface cross-sections.


Sign in / Sign up

Export Citation Format

Share Document