Folding-Reliability of Flexible Electronics in Wearable Applications

Author(s):  
Pradeep Lall ◽  
Hyesoo Jang ◽  
Ben Leever ◽  
Scott Miller

Abstract There is a growing need for flexible hybrid electronics solutions for wearable applications, in which the user may often wear electronics on body, on fabric or on skin. Electronics in wearable application may be subjected to stresses of daily motion including bending, twisting and stretching. Thus, there is need for technologies capable of flexibility, robustness and small size while being lightweight. Existing standards for focus on rigid electronics and there is scarcity of guidance for test-levels needed to assure reliability of flexible electronics. There is need for studies focused on the development of accelerated test conditions representative of field applications and the identification of failure mechanisms for test levels. In this study, experimental analysis on fatigue life of the PCB in cyclical folding load is conducted. A folding test-stand capable of replicating the stresses of daily motion in a lab-environment has been developed for the test. For the better understanding of the failure mechanism, analysis of failure modes is carried out. Consequently, it is found that fatigue life of the PCB is related to the several conditions: folding direction, moving distance, folding diameter and strain rate.

2014 ◽  
Vol 23 (6) ◽  
pp. 096369351402300
Author(s):  
Ahmed Abbadi ◽  
Laurent Michel ◽  
Bruno Castanié

An experimental investigation aiming to characterize the fatigue failure mechanisms and effect of ageing of skin/stringer interfaces is presented. A simplified specimen known as a “stringer foot specimen” is used. The effects of local design, of the angle of plies located at the interface and of moisture ageing are studied. Among other results, it is shown that a quasi-infinite fatigue life can be obtained under 33% of the static damage initiation load for all designs. In the framework of multi-level analysis, this study is a preliminary investigation to study cyclic buckling of composite stiffened structures.


1989 ◽  
Vol 111 (3) ◽  
pp. 424-432 ◽  
Author(s):  
D. Fritzson

Next to gear transmissions, belt transmissions are the most important mechanical transmissions. Today, belt design and development is based on extensive application tests of belts in the product development process. There is a need for theory development and design support systems. This would enable simulation for prediction and optimization of fatigue life. The aim of this work is to study certain parts of the belt in detail when the belt is running under loaded conditions. The areas of special interest are those which can be related to failure mechanisms. Thus the model can be used for calculations to predict service life. Here, the attention is focused on V-belts. Several different failure modes can be identified in V-belt fatigue. Here it is shown that the failure modes thus defined occur for such test conditions that long life can be associated with radial cracks, medium life with separation, and cord break with short life. In order to monitor the stress-strain state at any location in the belt, while simulating a running belt, “the parametric belt segment model” has been developed. Correlation with V-belt fatigue data for 11 different load cases have been made. The conclusion is that both failure mode and fatigue life can be predicted using computer simulations.


Author(s):  
Jin Young Kim ◽  
R. E. Hummel ◽  
R. T. DeHoff

Gold thin film metallizations in microelectronic circuits have a distinct advantage over those consisting of aluminum because they are less susceptible to electromigration. When electromigration is no longer the principal failure mechanism, other failure mechanisms caused by d.c. stressing might become important. In gold thin-film metallizations, grain boundary grooving is the principal failure mechanism.Previous studies have shown that grain boundary grooving in gold films can be prevented by an indium underlay between the substrate and gold. The beneficial effect of the In/Au composite film is mainly due to roughening of the surface of the gold films, redistribution of indium on the gold films and formation of In2O3 on the free surface and along the grain boundaries of the gold films during air annealing.


Author(s):  
Bhanu P. Sood ◽  
Michael Pecht ◽  
John Miker ◽  
Tom Wanek

Abstract Schottky diodes are semiconductor switching devices with low forward voltage drops and very fast switching speeds. This paper provides an overview of the common failure modes in Schottky diodes and corresponding failure mechanisms associated with each failure mode. Results of material level evaluation on diodes and packages as well as manufacturing and assembly processes are analyzed to identify a set of possible failure sites with associated failure modes, mechanisms, and causes. A case study is then presented to illustrate the application of a systematic FMMEA methodology to the analysis of a specific failure in a Schottky diode package.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 307
Author(s):  
Matthias Bruchhausen ◽  
Gintautas Dundulis ◽  
Alec McLennan ◽  
Sergio Arrieta ◽  
Tim Austin ◽  
...  

A substantial amount of research effort has been applied to the field of environmentally assisted fatigue (EAF) due to the requirement to account for the EAF behaviour of metals for existing and new build nuclear power plants. We present the results of the European project INcreasing Safety in NPPs by Covering Gaps in Environmental Fatigue Assessment (INCEFA-PLUS), during which the sensitivities of strain range, environment, surface roughness, mean strain and hold times, as well as their interactions on the fatigue life of austenitic steels has been characterized. The project included a test campaign, during which more than 250 fatigue tests were performed. The tests did not reveal a significant effect of mean strain or hold time on fatigue life. An empirical model describing the fatigue life as a function of strain rate, environment and surface roughness is developed. There is evidence for statistically significant interaction effects between surface roughness and the environment, as well as between surface roughness and strain range. However, their impact on fatigue life is so small that they are not practically relevant and can in most cases be neglected. Reducing the environmental impact on fatigue life by modifying the temperature or strain rate leads to an increase of the fatigue life in agreement with predictions based on NUREG/CR-6909. A limited sub-programme on the sensitivity of hold times at elevated temperature at zero force conditions and at elevated temperature did not show the beneficial effect on fatigue life found in another study.


2021 ◽  
Vol 28 (1) ◽  
pp. 139-152
Author(s):  
Teng Huang ◽  
Dongdong Zhang ◽  
Yaxin Huang ◽  
Chengfei Fan ◽  
Yuan Lin ◽  
...  

Abstract In this study, the flexural bearing capacity and failure mechanism of carbon fiber-reinforced aluminum laminate (CARALL) beams with a double-channel cross-section and a 3/2 laminated configuration were experimentally and numerically studied. Two types of specimens using different carbon fiber layup configurations ([0°/90°/0°]3 and [45°/0°/−45°]3) were fabricated using the pressure molding thermal curing forming process. The double-channel CARALL beams were subjected to static three-point bending tests to determine their failure behaviors in terms of ultimate bearing capacity and failure modes. Owing to the shortcomings of the two-dimensional Hashin failure criterion, the user-defined FORTRAN subroutine VUMAT suitable for the ABAQUS/Explicit solver and an analysis algorithm were established to obtain a progressive damage prediction of the CFRP layer using the three-dimensional Hashin failure criterion. Various failure behaviors and mechanisms of the CARALL beams were numerically analyzed. The results indicated that the numerical simulation was consistent with the experimental results for the ultimate bearing capacity and final failure modes, and the failure process of the double-channel CARALL beams could be revealed. The ultimate failure modes of both types of double-channel CARALL beams were local buckling deformation at the intersection of the upper flange and web near the concentrated loading position, which was mainly caused by the delamination failure among different unidirectional plates, tension and compression failure of the matrix, and shear failure of the fiber layers. The ability of each fiber layer to resist damage decreased in the order of 90° fiber layer > 0° fiber layer > 45° fiber layer. Thus, it is suggested that 90°, 0°, and 45° fiber layers should be stacked for double-channel CARALL beams.


2020 ◽  
Vol 12 (13) ◽  
pp. 5426
Author(s):  
Donghui Chen ◽  
Huie Chen ◽  
Wen Zhang ◽  
Chun Tan ◽  
Zhifa Ma ◽  
...  

The failure mechanism analysis of dam foundations is key for designing hydropower stations. This study analyses the rock masses in a sluice section, which is an important part of the main dam of the Datengxia Hydropower Station currently built in China. The stability of the sluice rock masses is predominantly affected by gentle through-going soft interlayers and steep structural fractures. Its foundation failure mechanism is investigated by means of a numerical method, i.e., Universal Distinct Element Code (UDEC) and the geomechanical model method. The modeling principle and process, and results for the rock dam foundation are introduced and generated by using the abovementioned two methods. The results indicate that the failure mechanism of the foundation rock masses, as characterized by gentle through-going and steep structural discontinuities, is not a conventional type of shear failure mechanism but a buckling one. This type of failure mechanism is verified by analyzing the deformation features resulting from the overloading of both methods and strength reduction of the numerical method.


Author(s):  
Matthew Greve ◽  
Marcus S. Dersch ◽  
J. Riley Edwards ◽  
Christopher P. L. Barkan ◽  
Jose Mediavilla ◽  
...  

One of the most common failure modes of concrete crossties in North America is the degradation of the concrete surface at the crosstie rail seat, also known as rail seat deterioration (RSD). Loss of material beneath the rail can lead to wide gauge, rail cant deficiency, and an increased risk of rail rollover. Previous research conducted at the University of Illinois at Urbana-Champaign (UIUC) has identified five primary failure mechanisms: abrasion, crushing, freeze-thaw damage, hydro-abrasive erosion, and hydraulic pressure cracking. The magnitude and distribution of load applied to the rail seat affects four of these five mechanisms; therefore, it is important to understand the characteristics of the rail seat load distribution to effectively address RSD. As part of a larger study funded by the Federal Railroad Administration (FRA) aimed at improving concrete crossties and fastening systems, researchers at UIUC are attempting to characterize the loading environment at the rail seat using matrix-based tactile surface sensors (MBTSS). This instrumentation technology has been implemented in both laboratory and field experimentation, and has provided valuable insight into the distribution of a single load over consecutive crossties. A review of past research into RSD characteristics and failure mechanisms has been conducted to integrate data from field experimentation with existing knowledge, to further explore the role of the rail seat load distribution on RSD. The knowledge gained from this experimentation will be integrated with associated research conducted at UIUC to form the framework for a mechanistic design approach for concrete crossties and fastening systems.


Author(s):  
John W. Lucek

Rolling-contact fatigue test methods were used to measure the wear performance of several silicon nitride materials. Sintered, hot pressed and hot isostatically pressed materials exhibited wear rates ranging over three orders of magnitude. Hot isostatically pressed materials had the lowest wear rates. Despite the disparity in wear performance, all materials tested had useful rolling-contact fatigue lives compared to steel. Fatigue life estimates, failure modes, and rolling wear performance for theses ceramics are compared to M-50 steel. This work highlights the rapid contact stress reductions that occur due to conformal wear in rolling-contact fatigue testing. Candidate bearing materials with unacceptably high wear rates may exhibit useful fatigue lives. Rolling contact bearing materials must possess useful wear and fatigue resistance. Proper performance screening of candidate bearing materials must describe the failure mode, wear rate, and the fatigue life. Guidelines for fatigue testing methods are proposed.


Sign in / Sign up

Export Citation Format

Share Document