Full-Scale Wrinkling Tests and Analyses of Large Diameter Corroded Pipes

Author(s):  
Marina Q. Smith ◽  
Daniel P. Nicolella ◽  
Christopher J. Waldhart

The aging of pipeline infrastructures has increased concern for the integrity of pipelines exhibiting non-perforating wall loss and settlement induced bending. While pressure based guidelines exist which allow pipeline operators to define operational margins of safety against rupture (e.g.; ANSI/ASME B31-G and RSTRENG (Battelle, 1989)), reliable procedures for the prediction of wrinkling in degraded pipes subjected to combined loading are virtually non-existent. This paper describes full-scale testing and finite element investigations performed in support of the development of accurate wrinkling prediction procedures for the Alyeska Pipeline Service Company. The procedures are applicable to corroded pipes subjected to combined loading such as longitudinal bending, internal pressure, and axial compression. During the test program, full-scale 48-inch diameter sections of the trans-Alaska pipeline were subjected to internal pressure and loads designed to simulate longitudinal bending from settlement, axial compression from the transport of hot oil, and the axial restraint present in buried pipe. Load magnitudes were designed based on normal and maximum operating conditions. Corrosion in the pipe section is simulated by mechanically reducing the wall thickness of the pipe. The size and depth of the thinned region is defined prior to each test, and attempts to bound the dimensions of depth, axial length, and hoop length for the general corrosion observed in-service. The analytical program utilizes finite element analyses that include the nonlinear anisotropic material behavior of the pipe steel through use of a multilinear kinematic hardening plasticity model. As in the tests, corrosion is simulated in the analyses by a section of reduced wall thickness, and loads and boundary constraints applied to the numerical model exactly emulate those applied in the full-scale tests. Verification of the model accuracy is established through a critical comparison of the simulated pipe structural behavior and the full-scale tests. Results of the comparisons show good correlation with measurements of the pipe curvature, deflections, and moment capacity at wrinkling. The validated analysis procedure is subsequently used to conduct parameter studies, the results of which complete a database of wrinkling conditions for a variety of corrosion sizes and loading conditions.

Author(s):  
Andrea Fonzo ◽  
Andrea Meleddu ◽  
Massimo Di Biagio ◽  
Gianluca Mannucci ◽  
Giuseppe Demofonti ◽  
...  

The new, higher grade pipeline steels provide an opportunity to reduce pipeline costs by enabling a shift to higher pressure at reasonable wall thickness. However, these higher operating stresses place greater demands on the pipeline, particularly when a running fracture is considered. Several studies have shown that intrinsic arrest cannot be counted on for these grades under all operating conditions. In such cases, crack arrestors will be needed. This paper presents results obtained using CSM’s proprietary PICPRO® finite element code to predict the performance of crack arresters on X120 pipes, and shows that the predictions agree well with full-scale experimental results obtained in arrestor trials.


Author(s):  
Luigi Di Vito ◽  
Jan Ferino ◽  
Stefano Amato ◽  
Gianluca Mannucci ◽  
Stefano Crippa ◽  
...  

Tenaris and Centro Sviluppo Materiali (CSM) carried out a Joint Industrial Project aimed at developing heavy wall line pipes. The suitability for very severe applications, involving high service pressures and temperatures, the latter causing large strain fluctuations, in presence of an aggressive sour environment, is analyzed both theoretically and experimentally, including small and full pipe models and tests. Five papers have been already presented on this project, in previous OMAE conferences. The present paper focusses on Lined Heavy Wall Pipes for the adoption in presence of extremely aggressive conveyed fluids. As in-service large strains are involved in the JIP envisaged scenarios, the risk of liner buckling is necessarily concerned. To evaluate the suitability of lined heavy pipes in presence of in-service severe straining, a finite element study has been performed aimed at quantifying the limits for pipe deformability without occurrence of liner buckling. Two full scale tests on lined pipe strings have been also performed, imposing the very severe straining sequence previously determined as extreme for pipeline resistance. The sequence has been applied both in pure axial (tensile / compressive) loading and in bending conditions. The latter has been performed in very low internal pressure conditions to conservatively verify the resistance to liner buckling. In both cases, the lined heavy wall pipe resisted the severe straining sequence without any liner buckling, pipe excessive ratcheting or any other damage compromising the serviceability of the pipe.


2021 ◽  
Author(s):  
Ruud Selker ◽  
Joost Brugmans ◽  
Ping Liu ◽  
Carlos Sicilia

Abstract Internally pressurised pipe behaves differently than externally pressurised pipe. DNVGL-ST-F101 [4], a prevailing standard for the design of submarine pipelines, provides limit-state equations for combined loading that are valid only if the diameter-to-wall-thickness ratio (D/t) is between 15 and 45. A recent study has shown that the results are increasingly conservative for lower values of this ratio if the nett pressure is acting on the pipe’s outside [8], especially if it is below 20. In this paper, the applicability of the limit-state equations for thick-walled pipe with D/t less than 15 and loaded by a nett internal pressure has been investigated. The first step was a fundamental review of the formulations. Next, the predicted capacities were compared with those estimated using a finite-element (FE) model. The results greatly coincided, which indicates that the conservatism underlying the formulations does not depend on D/t. Hence they can be used for design against local buckling under internal overpressure, too, when the ratio is below 15.


Author(s):  
Remy Her ◽  
Jacques Renard ◽  
Vincent Gaffard ◽  
Yves Favry ◽  
Paul Wiet

Composite repair systems are used for many years to restore locally the pipe strength where it has been affected by damage such as wall thickness reduction due to corrosion, dent, lamination or cracks. Composite repair systems are commonly qualified, designed and installed according to ASME PCC2 code or ISO 24817 standard requirements. In both of these codes, the Maximum Allowable Working Pressure (MAWP) of the damaged section must be determined to design the composite repair. To do so, codes such as ASME B31G for example for corrosion, are used. The composite repair systems is designed to “bridge the gap” between the MAWP of the damaged pipe and the original design pressure. The main weakness of available approaches is their applicability to combined loading conditions and various types of defects. The objective of this work is to set-up a “universal” methodology to design the composite repair by finite element calculations with directly taking into consideration the loading conditions and the influence of the defect on pipe strength (whatever its geometry and type). First a program of mechanical tests is defined to allow determining all the composite properties necessary to run the finite elements calculations. It consists in compression and tensile tests in various directions to account for the composite anisotropy and of Arcan tests to determine steel to composite interface behaviors in tension and shear. In parallel, a full scale burst test is performed on a repaired pipe section where a local wall thinning is previously machined. For this test, the composite repair was designed according to ISO 24817. Then, a finite element model integrating damaged pipe and composite repair system is built. It allowed simulating the test, comparing the results with experiments and validating damage models implemented to capture the various possible types of failures. In addition, sensitivity analysis considering composite properties variations evidenced by experiments are run. The composite behavior considered in this study is not time dependent. No degradation of the composite material strength due to ageing is taking into account. The roadmap for the next steps of this work is to clearly identify the ageing mechanisms, to perform tests in relevant conditions and to introduce ageing effects in the design process (and in particular in the composite constitutive laws).


Author(s):  
Hany F. Abdalla ◽  
Mohammad M. Megahed ◽  
Maher Y. A. Younan

A simplified technique for determining the shakedown limit load of a structure employing an elastic-perfectly-plastic material behavior was previously developed and successfully applied to a long radius 90-degree pipe bend. The pipe bend is subjected to constant internal pressure and cyclic bending. The cyclic bending includes three different loading patterns namely; in-plane closing, in-plane opening, and out-of-plane bending moment loadings. The simplified technique utilizes the finite element method and employs small displacement formulation to determine the shakedown limit load without performing lengthy time consuming full cyclic loading finite element simulations or conventional iterative elastic techniques. In the present paper, the simplified technique is further modified to handle structures employing elastic-plastic material behavior following the kinematic hardening rule. The shakedown limit load is determined through the calculation of residual stresses developed within the pipe bend structure accounting for the back stresses, determined from the kinematic hardening shift tensor, responsible for the translation of the yield surface. The outcomes of the simplified technique showed very good correlation with the results of full elastic-plastic cyclic loading finite element simulations. The shakedown limit moments output by the simplified technique are used to generate shakedown diagrams of the pipe bend for a spectrum of constant internal pressure magnitudes. The generated shakedown diagrams are compared with the ones previously generated employing an elastic-perfectly-plastic material behavior. These indicated conservative shakedown limit moments compared to the ones employing the kinematic hardening rule.


Author(s):  
Aaron O. Akotuah ◽  
Sabah G. Ali ◽  
Jeffrey Erochko ◽  
Xia Zhang ◽  
George V. Hadjisophocleous

Connection design is critical in timber buildings since the connections tend to have lower strength than the structural members themselves and they tend to fail in a brittle manner. The effect of connection geometry on the fire performance of a hybrid steel-timber shear connection is investigated by full-scale testing. These tests were conducted by exposing the test specimens to the standard time-temperature curve defined by CAN/ULC-S101 (CAN/ULC-S101, 2007). Test results showed that the fire resistance of these connections depends on the load ratio, the type of connection and the relative exposure of the steel plate to fire. Finite element models of the connections under fire were constructed using ABAQUS/CAE and these were validated using the test results. These numerical model results correlate well with test results with ±8.32% variation.


2007 ◽  
Vol 340-341 ◽  
pp. 353-358 ◽  
Author(s):  
M. Loh-Mousavi ◽  
Kenichiro Mori ◽  
K. Hayashi ◽  
Seijiro Maki ◽  
M. Bakhshi

The effect of oscillation of internal pressure on the formability and shape accuracy of the products in a pulsating hydroforming process of T-shaped parts was examined by finite element simulation. The local thinning was prevented by oscillating the internal pressure. The filling ratio of the die cavity and the symmetrical degree of the filling was increased by the oscillation of pressure. The calculated deforming shape and the wall thickness are in good agreement with the experimental ones. It was found that pulsating hydroforming is useful in improving the formability and shape accuracy in the T-shape hydroforming operation.


2021 ◽  
Author(s):  
Barry Stewart ◽  
Sam Kwok Lun Lee

Abstract Wellhead connectors form a critical part of subsea tree production systems. Their location in the riser load path means that they are subjected to high levels of bending and tension loading in addition to internal pressure and cyclic loading. As more fields continue to be discovered and developed that are defined as High Pressure and/or High Temperature (HPHT) these loading conditions become even more arduous. In order to ensure the integrity of HPHT components, industry requirements for components are setout in API 17TR8. This technical report provides a design verification methodology for HPHT products and some requirements for validation testing. The methodology provides detail on the assessment of static structural and cyclic capacities but less detail on how to assess the functional and serviceability criteria for wellhead connectors. Similarly, API 17TR8 does not include prescriptive validation requirements for wellhead connectors and refers back to historical methods. This paper describes a practical application of the API 17TR8 methodology to the development of a 20k HPHT connector and how it was implemented to verify and validate the connector design through full scale tests to failure. A methodology was developed to meet the requirements of the relevant industry standards and applied to the connector to develop capacity charts for static combined loading. Verification was carried out on three dimensional 180° FEA models to ensure all non axi-symmetric loading is accurately captured. Connector capacities are defined based on API 17TR8 criteria with elastic plastic analysis (i.e. collapse load, local failure and ratcheting), functionality/serviceability criteria defined through a FMECA review and also including API STD 17G criteria including failure modes such as lock/unlock functionality, fracture based failure, mechanical disengagement, leakage and preload exceedance. These capacities are validated through full scale testing based on the requirements of API 17TR7 and API STD 17G with combined loading applied to the Normal, Extreme and Survival capacity curves (as defined by "as-built" FEA using actual material properties). Various test parameters such as strain gauge data, hub separation data, displacements, etc. were recorded and correlated to FEA prediction to prove the validity of the methodology. Further validation was carried out by applying a combined load up to the FEA predicted failure to confirm the design margins of the connector. Post-test review was carried out to review the suitability of the requirements set out in API 17TR8 and API STD 17G for the verification and validation of subsea connectors. The results build on previous test results to validate the effectiveness of the API 17TR8 code for verification and validation of connectors. The results show that real margins between failure of the connector and rated loads are higher than those defined in API 17TR8 and show that the methodology can be conservative.


Author(s):  
Celal Cakiroglu ◽  
Samer Adeeb ◽  
J. J. Roger Cheng ◽  
Millan Sen

Pipelines can be subjected to significant amounts of tensile forces due to geotechnical movements like slope instabilities and seismic activities as well as due to frost heave and thaw cycles in arctic regions. The tensile strain capacity εtcrit of pipelines is crucial in the prediction of rupture and loss of containment capability in these load cases. Currently the Oil and Gas Pipeline Systems code CSA Z662-11 0 contains equations for the prediction of εtcrit as a function of geometry and material properties of the pipeline. These equations resulted from extensive experimental and numerical studies carried out by Wang et al [2]–[6] using curved wide plate tests on pipes having grades X65 and higher. Verstraete et al 0 conducted curved wide plate tests at the University of Ghent which also resulted in tensile strain capacity prediction methods and girth weld flaw acceptability criteria. These criteria are included in the European Pipeline Research Group (EPRG) Tier 2 guidelines. Furthermore Verstrate et al 0 introduced a pressure correction factor of 0.5 in order to include the effect of internal pressure in the tensile strain capacity predictions in a conservative way. Further research by Wang et al with full scale pipes having an internal pressure factor of 0.72 also showed that εtcrit decreases in the presence of internal pressure [10]–[15]. In their work, Wang et al presented a clear methodology for the design of full scale experiments and numerical simulations to study the effect of internal pressure on the tensile strain capacity of pipes with girth weld flaws [10]–[15]. However, there has been limited testing to enable a precise understanding of the tensile strain capacity of pipes with grades less than X65 as a function of girth weld flaw sizes and the internal pressure. In this paper the experimental setup for the testing of grade X52 full scale specimens with 12″ diameter and ¼″ wall thickness is demonstrated. In the scope of this research 8 full scale specimens will be tested and the results will be used to formulate the tensile strain capacity of X52 pipes under internal pressure. The specimens are designed for the simultaneous application of displacement controlled tensile loading and the internal pressure. Finite element analysis is applied in the optimization process for the sizes of end plates and connection elements. Also the lengths of the full scale specimens are determined based on the results from finite element analysis. The appropriate lengths are chosen in such a way that between the location of the girth weld flaw and the end plates uniform strain zones could be obtained. The internal pressure in these experiments is ranging between pressure values causing 80% SMYS and 30% SMYS hoop stress. The end plates and connection elements of the specimens are designed in such a way that the tensile displacement load is applied with an eccentricity of 10% of the pipe diameter with the purpose of increasing the magnitude of tensile strains at the girth weld flaw location. The results of two full scale experiments of this research program are presented. The structural response from the experiments is compared to the finite element simulation. The remote strain values of the experiment are found to be higher than the εtcrit values predicted by the equations in 0.


Author(s):  
Sylvester Agbo ◽  
Meng Lin ◽  
Iman Ameli ◽  
Ali Imanpour ◽  
Da-Ming Duan ◽  
...  

Abstract Pipelines subjected to displacement-controlled loading such as ground movement may experience significant longitudinal strain. This can potentially impact pipeline structural capacity and their leak-tight integrity. Reliable calibration of the tensile strain capacity (TSC) of pipelines plays a critical role in strain-based design (SBD) methods. Recent studies were focused mostly on high toughness modern pipelines, while limited research was performed on lower-grade vintage pipelines. However, a significant percentage of energy resources in North America is still being transported in vintage pipelines. Eight full-scale pressurized four-point bending tests were previously conducted on X42, NPS 22 vintage pipes with 12.7 mm wall thickness to investigate the effect of internal pressure and flaw size on TSC. The pipes were subjected to 80% and 30% specified minimum yield strength (SMYS) internal pressures with different girth weld flaw sizes machined at the girth weld center line. This paper evaluates the TSC of X42 vintage pipeline by utilizing ductile fracture mechanics models using damage plasticity models in ABAQUS extended finite element method (XFEM). The damage parameters required for simulating crack initiation and propagation in X42 vintage pipeline are calibrated numerically by comparing the numerical models with the full-scale test results. With the appropriate damage parameters, the numerical model can reasonably reproduce the full-scale experimental test results and can be used to carry out parametric analysis to characterize the effect of internal pressure and flaw size on TSC of X42 vintage pipes.


Sign in / Sign up

Export Citation Format

Share Document