API 5L X80 ERW Pipes: TenarisConfab and Usiminas Development

Author(s):  
Juliana E. Roza ◽  
Marcelo C. Fritz ◽  
Marco A. Tivelli ◽  
Ronaldo C. Silva ◽  
Lu´cio S. Miranda ◽  
...  

The utilization of high strength steels can decrease, both, installation and operation costs of a new pipeline, since the increase of mechanical resistance can reduce the pipe wall thickness and, consequently, the weight of the pipe. For this purpose, the manufacture of electric resistance welding (ERW) pipes is recent, and it comes as an opportunity for gas pipelines, mainly onshore projects. As a function of their larger productivity, ERW pipes are more economically attractive than those produced by seamless and SAW processes. TenarisConfab and Usiminas, through studies and investments in manufacturing processes, have been working to increase their skills, in order to supply API 5L X80 ERW pipes. The steel elaborated by Usiminas is low C, high Mn, Nb, V and Ti microalloyed, and with additions of Cr and Mo, aiming to produce hot rolled coils with acicular microstructure, achieved as a combination between its chemical composition and higher cooling rates after hot rolling. The results in φ18” (457 mm) × 0,469” (11,91 mm) pipes are presented in this article. High toughness values reached at very low temperatures suggest that X80 ERW pipes developed by TenarisConfab and Usiminas may be an excellent option of choice for onshore projects that request pipes in diameters up to 20” (508 mm) and thickness up to 0.500” (12.7 mm).

Alloy Digest ◽  
1977 ◽  
Vol 26 (4) ◽  

Abstract YS-T 50 to YS-T 140 Steels comprise a series of high-strength, cold-rolled steels designed to meet performance and weight-saving objectives. They are an extension of Youngstown's series of hot-rolled high-strength steels (see Youngstown YS-T Steel, Alloy Digest SA-261, March 1971). The YS-T 50 to YS-T 140 steels have minimum yield strengths ranging from 50,000 psi to 140,000 psi. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and bend strength. It also includes information on heat treating, machining, and joining. Filing Code: SA-331. Producer or source: Youngstown Sheet and Tube Company.


2013 ◽  
Vol 690-693 ◽  
pp. 106-109 ◽  
Author(s):  
Xiang Dong Huo ◽  
Lin Guo ◽  
Jin Song Feng ◽  
Chao Luo ◽  
Jun Qu

A new hot-rolled ship plate with high strength and high toughness is successfully developed through chemical composition design and TMCP process. Experimental methods, such as OM, TEM and X-EDS, were used to study the microstructure and precipitates of steel. The primary microstructural constituent is acicular ferrite, quasi-polygonal ferrite with second constituents along grain boundaries. Lath width of acicular ferrite is about 1μm. Cubic particles about several hundreds nanometers and nanometer particles exist in experimental steel. It can be concluded that acicular ferrite is the main reason for high strength and super toughness. precipitation hardening due to dispersed precipitations of carbonitrides can not be overlooked.


2010 ◽  
Vol 654-656 ◽  
pp. 82-85 ◽  
Author(s):  
Shu Zhou ◽  
Ying Wang ◽  
Nai Lu Chen ◽  
Yong Hua Rong ◽  
Jian Feng Gu

The quenching-partitioning-tempering (Q-P-T) process, based on the quenching and partitioning (Q&P) treatment, has been proposed for producing high strength steels containing significant fraction of film-like retained austenite and controlled amount of fine martensite laths. In this study, a set of Q-P-T processes for C-Mn-Si-Ni-Nb hot rolled plates are designed and realized. The steels with Q-P-T processes present a combination of high strength and relatively good ductility. The origin of such mechanical properties is revealed by microstructure characterization.


Metals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 958 ◽  
Author(s):  
Teng Wu ◽  
Run Wu ◽  
Bin Liu ◽  
Wen Liang ◽  
Deqing Ke

The quenching and partitioning (Q&P) process of advanced high strength steels results in a significant enhancement in their strength and ductility. The development of controlled rolling and cooling technology provides an efficient tool for microstructural design in steels. This approach allows to control phase transformations in order to generate the desired microstructure in steel and, thus, to achieve the required properties. To refine grain structure in a Fe-Si-Mn-Nb steel and to generate the microstructure consisting of martensitic matrix with embedded retained austenite grains, hot rolling and pressing combined with ultrafast cooling and Q&P process is employed. The slender martensite in hot rolled Q&P steel improves the strength of test steel and the flake retained austenite improves the plasticity and work hardening ability through the Transformation Induced Plasticity (TRIP) effect.


2014 ◽  
Vol 996 ◽  
pp. 457-462 ◽  
Author(s):  
Thomas Schaupp ◽  
Dirk Schröpfer ◽  
Arne Kromm ◽  
Thomas Kannengiesser

Beside quenched and tempered (QT) high strength steels advanced technologies in steel manufacturing provide steels produced by the thermo-mechanical controlled process (TMCP) with yield strength of 960 MPa. These steels differ in the carbon and micro-alloying element content. With variation of heat control TIG-welded dummy seams on both steel types were performed. Analyses concerning microstructure and residual stress evolution due to welding showed typical stress distributions according to common concepts. Yet, the TMCP-steel shows higher residual stresses than the QT-steel.


2001 ◽  
Vol 32 (13) ◽  
pp. 745-760 ◽  
Author(s):  
R. D. K. Misra ◽  
S. W. Thompson ◽  
T. A. Hylton ◽  
A. J. Boucek

2011 ◽  
Vol 284-286 ◽  
pp. 1275-1278
Author(s):  
Xiang Dong Huo ◽  
Sheng Xia Lv ◽  
Xin Ping Mao ◽  
Qi Lin Chen

New 700MPa hot rolled ultra-high strength steels were successfully developed by using Ti micro-alloying technology in CSP line. Experimental methods, such as OM, TEM and chemical phase analysis, were used to study the experimental steel. The microstructure is composed of quasi-polygonal ferrite grains, whose average grain size is about 4μm. Large number of nanometer TiC particles distribute along dislocations. The mass fraction of MX phase is 0.0793wt%, in which the particles smaller than 10nm account for 33.7%. The contribution of precipitation hardening resulting from nanometer particles is calculated as approximate 158MPa.


2015 ◽  
Vol 138 (2) ◽  
Author(s):  
Muntaseer Kainat ◽  
J. J. Roger Cheng ◽  
Michael Martens ◽  
Samer Adeeb

The geometric imperfections in high strength U-ing, O-ing and expanding (UOE) manufactured pipes are investigated in this paper using a high-resolution 3D surface scanner, and a reverse engineering and inspection software. The geometric analyses show that the initial imperfection patterns in the UOE manufactured pipes are not at all random, although the magnitudes of imperfections may vary across specimens. These patterns of outside radii and pipe wall thickness imperfections consistently appear along the length of the specimens regardless of their D/t ratios and manufacturer. The sources of these imperfections can potentially be traced back to the UOE manufacturing process.


Sign in / Sign up

Export Citation Format

Share Document