Strain Relief of a Buried Pipeline Due to Slope Movement

Author(s):  
Michael Martens ◽  
Richard Kania ◽  
Raymond Kare ◽  
David Topp ◽  
Frank Sander

Pipelines constructed through geologically active areas, over time, can experience a significant amount of strain due to slope movement. Eventually may become necessary to strain relief the pipeline to ensure its integrity, which is the removal of the surrounding soil to allow for relaxation of the pipeline. This paper looks at the issue of pipeline strain relief due to gradual slope movement and quantifying the amount of relaxation. A non-contacting electromagnetic tool, the TSC StressProbe, that responds to material strain in ferromagnetic materials and a series of strain gauges were used to take in-situ pipeline strain measurements during the strain relieving excavation.

Author(s):  
Stephen Westwood ◽  
Michael Martens ◽  
Richard Kania ◽  
David Topp ◽  
Raymond Kare´ ◽  
...  

The StressProbe is a non-contacting electromagnetic tool that responds to material strain in ferromagnetic materials. Previous studies have concentrated on uni-axial strain measurements; in this study, we extend the scope of work by measuring bi-axial strains on a pipe specimen subject to internal pressure and to a displacement-controlled, axial tensile/compressive load. Specified pressure and load combinations were obtained, and measurements from the StressProbe were compared to those from tri-axial strain gauges installed on the pipe specimen. In this paper, we present the theory behind this measurement method and the results from this study. Also discussed are measurement applications both inside and outside the pipe specimen.


Author(s):  
Graeme King ◽  
Dan Hoang ◽  
Victoria Stranzinger ◽  
David Thom

Abstract An NPS 24 inline gate valve on a buried hot bitumen pipeline operating at temperatures up to 149°C failed open. The valve is on the north bank of the Steepbank River in northern Alberta and is equipped with an actuator that can automatically close the valve to protect the river in case of an emergency. It was therefore important to replace the valve as soon as practical. Worley was engaged to provide detailed engineering services for replacing the valve. Engineering objectives covered safety concerns associated with high operating temperatures and large axial compressive force in the pipeline, minimization of downtime, development of the best long-term valve replacement solution, and return of the pipeline to service with the same resistance to upheaval buckling it had when it was originally designed and constructed. Because the pipeline is buried and therefore restrained by the surrounding soil, an important goal of the original design was to prevent upheaval buckling and possible loss of containment by controlling thermal expansion forces due to its high operating temperature. Control was achieved during the original construction in two ways. Firstly, thermal compressive forces were reduced by heating the line to 90°C with forced air and locking it into the surrounding soil in its expanded state, and secondly, restraint was increased by using good backfill compaction, increased depth of burial, and imported fill wherever necessary. The high axial compressive force on the inline buried valve was identified as a possible cause of failure, and an early decision was made to replace it using an aboveground valve with sufficiently flexible aboveground piping to minimize or eliminate compressive forces on the valve. When the pipeline was cooled and cut to install the new valve, the original prestress was released, and the cut ends of the pipe pulled back on either side of the valve. The lost prestress was reinstated to the level specified in the original design using an innovative custom designed load bearing strut and tensioning system, referred to here as a Pipe Prop, that was installed between the cut ends of the buried mainline after the failed valve and fittings had been removed. The Pipe Prop also prevented differential axial movement between the cut ends of the buried pipeline due to changes in the operating pressure and temperature. This reduced the need for flexibility in the aboveground piping and allowed a short offset to be used between the new valve and the buried mainline, which reduced the footprint of the aboveground piping enough to fit within the restrictive boundaries of the site. Strain gauges were installed on the pipeline adjacent to the failed valve and upstream and downstream of the valve site. The gauges measured changes in stress when the buried pipeline was first cut, and allowed the stress state of the buried pipeline to be calculated to find if the cause of failure had been large axial loads imposed on the valve by the pipeline. The strain gauges also measured strain in the buried pipeline while using the tensioning system built into the Pipe Prop to re-establish the design level of prestress. Permanent strain gauges were also installed on the new aboveground piping adjacent to the replacement valve. The pipeline was returned to hotbit service in August 2019 and has operated continuously since that time without further problems at the valve station.


2021 ◽  
Vol 13 (3) ◽  
pp. 1505
Author(s):  
Ignacio Menéndez Pidal ◽  
Jose Antonio Mancebo Piqueras ◽  
Eugenio Sanz Pérez ◽  
Clemente Sáenz Sanz

Many of the large number of underground works constructed or under construction in recent years are in unfavorable terrains facing unusual situations and construction conditions. This is the case of the subject under study in this paper: a tunnel excavated in evaporitic rocks that experienced significant karstification problems very quickly over time. As a result of this situation, the causes that may underlie this rapid karstification are investigated and a novel methodology is presented in civil engineering where the use of saturation indices for the different mineral specimens present has been crucial. The drainage of the rock massif of El Regajal (Madrid-Toledo, Spain, in the Madrid-Valencia high-speed train line) was studied and permitted the in-situ study of the hydrogeochemical evolution of water flow in the Miocene evaporitic materials of the Tajo Basin as a full-scale testing laboratory, that are conforms as a whole, a single aquifer. The work provides a novel methodology based on the calculation of activities through the hydrogeochemical study of water samples in different piezometers, estimating the saturation index of different saline materials and the dissolution capacity of the brine, which is surprisingly very high despite the high electrical conductivity. The circulating brine appears unsaturated with respect to thenardite, mirabilite, epsomite, glauberite, and halite. The alteration of the underground flow and the consequent renewal of the water of the aquifer by the infiltration water of rain and irrigation is the cause of the hydrogeochemical imbalance and the modification of the characteristics of the massif. These modifications include very important loss of material by dissolution, altering the resistance of the terrain and the increase of the porosity. Simultaneously, different expansive and recrystallization processes that decrease the porosity of the massif were identified in the present work. The hydrogeochemical study allows the evolution of these phenomena to be followed over time, and this, in turn, may facilitate the implementation of preventive works in civil engineering.


Plant Disease ◽  
2014 ◽  
Vol 98 (4) ◽  
pp. 551-558 ◽  
Author(s):  
G. A. Ridge ◽  
S. N. Jeffers ◽  
W. C. Bridges ◽  
S. A. White

The goal of this study was to develop a procedure that could be used to evaluate the potential susceptibility of aquatic plants used in constructed wetlands to species of Phytophthora commonly found in nurseries. V8 agar plugs from actively growing cultures of three or four isolates of Phytophthora cinnamomi, P. citrophthora, P. cryptogea, P. nicotianae, and P. palmivora were used to produce inocula. In a laboratory experiment, plugs were placed in plastic cups and covered with 1.5% nonsterile soil extract solution (SES) for 29 days, and zoospore presence and activity in the solution were monitored at 2- or 3-day intervals with a rhododendron leaf disk baiting bioassay. In a greenhouse experiment, plugs of each species of Phytophthora were placed in plastic pots and covered with either SES or Milli-Q water for 13 days during both summer and winter months, and zoospore presence in the solutions were monitored at 3-day intervals with the baiting bioassay and by filtration. Zoospores were present in solutions throughout the 29-day and 13-day experimental periods but consistency of zoospore release varied by species. In the laboratory experiment, colonization of leaf baits decreased over time for some species and often varied among isolates within a species. In the greenhouse experiment, bait colonization decreased over time in both summer and winter, varied among species of Phytophthora in the winter, and was better in Milli-Q water. Zoospore densities in solutions were greater in the summer than in the winter. Decreased zoospore activities for some species of Phytophthora were associated with prolonged temperatures below 13 or above 30°C in the greenhouse. Zoospores from plugs were released consistently in aqueous solutions for at least 13 days. This procedure can be used to provide in situ inocula for the five species of Phytophthora used in this study so that aquatic plant species can be evaluated for potential susceptibility.


2013 ◽  
Vol 50 (12) ◽  
pp. 1236-1249 ◽  
Author(s):  
C.Y. Cheuk ◽  
K.K.S. Ho ◽  
A.Y.T. Lam

Soil nailing has been used to upgrade substandard loose fill slopes in Hong Kong. Due to the possibility of static liquefaction failure, a typical design arrangement comprises a structural slope facing anchored by a grid of soil nails bonded into the in situ ground. Numerical analyses have been conducted to examine the influence of soil nail orientations on the behaviour of the ground nail–facing system. The results suggest that the use of steeply inclined nails throughout the entire slope could avoid global instability, but could lead to significant slope movement especially when sliding failure prevails, for instance, due to interface liquefaction. The numerical analyses also demonstrate that if only subhorizontal nails are used, the earth pressure exerted on the slope facing may cause uplift failure of the slope cover. To overcome the shortcomings of using soil nails at a single orientation, a hybrid nail arrangement comprising nails at two different orientations is proposed. The numerical analyses illustrate that the hybrid nail arrangement would limit slope movement and enhance the robustness of the system.


2021 ◽  
Vol 13 (9) ◽  
pp. 1846
Author(s):  
Vivek Kumar ◽  
Isabel M. Morris ◽  
Santiago A. Lopez ◽  
Branko Glisic

Estimating variations in material properties over space and time is essential for the purposes of structural health monitoring (SHM), mandated inspection, and insurance of civil infrastructure. Properties such as compressive strength evolve over time and are reflective of the overall condition of the aging infrastructure. Concrete structures pose an additional challenge due to the inherent spatial variability of material properties over large length scales. In recent years, nondestructive approaches such as rebound hammer and ultrasonic velocity have been used to determine the in situ material properties of concrete with a focus on the compressive strength. However, these methods require personnel expertise, careful data collection, and high investment. This paper presents a novel approach using ground penetrating radar (GPR) to estimate the variability of in situ material properties over time and space for assessment of concrete bridges. The results show that attributes (or features) of the GPR data such as raw average amplitudes can be used to identify differences in compressive strength across the deck of a concrete bridge. Attributes such as instantaneous amplitudes and intensity of reflected waves are useful in predicting the material properties such as compressive strength, porosity, and density. For compressive strength, one alternative approach of the Maturity Index (MI) was used to estimate the present values and compare with GPR estimated values. The results show that GPR attributes could be successfully used for identifying spatial and temporal variation of concrete properties. Finally, discussions are presented regarding their suitability and limitations for field applications.


2021 ◽  
Vol 50 (1) ◽  
pp. 125-143
Author(s):  
Ronald J. Clarke ◽  
Travis Rayne Pickering ◽  
Jason L. Heaton ◽  
Kathleen Kuman

The earliest South African hominids (humans and their ancestral kin) belong to the genera Australopithecus, Paranthropus, and Homo, with the oldest being a ca. 3.67 million-year-old nearly complete skeleton of Australopithecus (StW 573) from Sterkfontein Caves. This skeleton has provided, for the first time in almost a century of research, the full anatomy of an Australopithecus individual with indisputably associated skull and postcranial bones that give complete limb lengths. The three genera are also found in East Africa, but scholars have disagreed on the taxonomic assignment for some fossils owing to historical preconceptions. Here we focus on the South African representatives to help clarify these debates. The uncovering of the StW 573 skeleton in situ revealed significant clues concerning events that had affected it over time and demonstrated that the associated stalagmite flowstones cannot provide direct dating of the fossil, as they are infillings of voids caused by postdepositional collapse.


Sign in / Sign up

Export Citation Format

Share Document