A Study of Crack Detection Ultrasonic Attributes to Manage Leak Threats Associated With Short Crack-Like Flaws in ERW Pipelines

Author(s):  
Kaitlyn Korol ◽  
Yvan Hubert ◽  
Gordon Fredine ◽  
Petra Senf ◽  
Sherry-Ann Koon Koon

Inline Inspection (ILI) tools along with hydrostatic testing have been the primary identification and mitigation techniques for cracking threats on liquids pipelines. Each technique faces detection challenges in relation with the weld type, geometry, and feature types, sizes and orientations. Low frequency electric resistance welds (LF ERWs) are subject to a number of crack-like defects due to the ERW manufacturing process. These defects may include fatigue cracks, lack of fusion, burned metal defects, stitched welds, cold welds, cracks in hard HAZ, surface breaking hook cracks near the weld and selective seam corrosion [1]. Within a population of features in a pipeline, a subpopulation can exist of short, deep defects (>50% wt) that may be undersized by the ILI tool or not detected by a hydrostatic test due to the length of the flaw. For ILI tools, a length detection threshold is set based on the tool speed (which is dictated by the tool type and configuration). A feature may be undersized by the ILI tool if its length is below this tool threshold. For hydrostatic testing, through-wall flaws may be undetected if the flaw length is below the critical length for a significant leak. Through detailed ILI data analysis, Enbridge along with PII Pipeline Solutions has been able to consistently identify short and deep crack-related defects on LF ERW pipe through means other than feature dimensions provided by the ILI tool. In-ditch non-destructive examination and destructive laboratory testing has confirmed these features are critical and fall below current ILI tool’s detection thresholds. This paper discusses unique ILI data attributes that may identify a more severe feature than would conventional ILI sizing practices, and how the identification and selection procedure is being applied across Enbridge’s pipeline system. This analysis effort aligns with Enbridge’s goal to continuously improve its integrity management processes and further enhance the safety of its pipelines.

2013 ◽  
Vol 330 ◽  
pp. 536-541
Author(s):  
Sheng Lai ◽  
Hu Chen ◽  
Yue Wen Fu

The fatigue cracks of key parts, as one of the main damages of multilayer structure in aircraft, are important objects for aircraft structural health monitoring. Conventional electromagnetic testing which uses sinusoidal signal is high sensitive to surface cracks, but it is typically difficult to measure or predict embedding cracks. A novel electromagnetic detection technique is proposed in this paper, and dual polarity low-frequency pulse is used to excite the coil. A time-domain analysis method called time-slice is utilized to obtain the transient amplitude matrix from array signal. Good results have been presented by such dynamic imaging of simulating buried cracks in multi-layer riveted structure. Experimental results show that the new electromagnetic testing has the advantages of hidden defects detection and rapid detection, and it can effectively detect buried defects in multilayer structures of aircraft, and determine damage position.


Author(s):  
Michael T. Anderson ◽  
Stephen E. Cumblidge ◽  
Steven R. Doctor

As part of a multi-year program funded by the United States Nuclear Regulatory Commission (US NRC) to address nondestructive examination (NDE) reliability of inservice inspection (ISI) programs, studies conducted at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington, have focused on assessing novel NDE approaches for the inspection of coarse-grained, cast austenitic stainless steel reactor components. The primary objective of this work is to provide information to the US NRC on the utility, effectiveness and reliability of ultrasonic testing (UT) as related to the ISI of primary piping components in US commercial nuclear power plants. This paper describes progress, recent developments and results from an assessment of a portion of the work relating to the ultrasonic low frequency phased array inspection technique. Westinghouse Owner’s Group (WOG) cast stainless steel pipe segments with thermal and mechanical fatigue cracks, PNNL samples containing thermal fatigue cracks and several blank vintage specimens having very coarse grains that are representative of early centrifugally cast piping installed in PWRs, were used for assessing the inspection method. The phased array approach was implemented using an R/D Tech Tomoscan III system operating at 1.0 MHz and 500 kHz, providing composite volumetric images of the samples. Several dual, transmit-receive, custom designed low-frequency arrays were employed in laboratory trials. Results from laboratory studies for assessing detection and localization are discussed.


Author(s):  
Cory Wargacki ◽  
Wade Forshner ◽  
Rogelio Guajardo ◽  
Thomas Hennig

Abstract Axial cracking inspections have become common place on a global level within pipeline operator’s integrity management programs. As technology continues to improve, operators are presented with more accurate assessments of the assets that are in current operation. However as more information is collected more threats are being identified and need to be assessed in a manner that is more applicable to their specific morphology. It is well known that vintage ERW manufacturing techniques can suffer from a wide range of potential threats such as lack of fusion or inclusions within the steel forming hook cracks during the rolling and welding process. Current In-line inspection technologies that are designed to detect, Identify and size cracklike flaws in pipelines are very proficient at doing so. However, due to the physical principals of the Ultrasonic pulse echo technology, deep features approaching, or above pulse echo saturation amplitudes pose challenges in determining accurate depth sizing. In 2015 a Canadian pipeline operator determined the need to inspect one of their 16” assets for axial crack-like indications. During the analysis of this inspection data set, a number of saturated crack-like indications were reported. Saturated cracklike signals present a challenge to operators as they have to be considered in a conservative manner as 4mm or deeper which in turn leads to difficulties in the prioritization of resources associated with the excavation program. The operator approached NDT Global in 2017, after the release of NDT Global’s Enhanced sizing depth algorithm to reevaluate the features that were present in the previous crack inspection data set. Working together with the operator, NDT Global applied the Enhanced sizing methodology to all features of significance in the pipeline segment and compared the results to lab measurements and in field NDE measurements. The outcome of the reanalysis using the most up to date software algorithms utilizing enhanced sizing showed great benefits by increasing the accuracy of the crack depth sizing as NDT Global was now able to report full through wall depth sizing, however there were still some limitations on the ability to accurately size crack-like features as the primary threat is believed to be a result of hook cracks. As a final step in this program NDT Global was provided sample spools that were cut out of the pipeline segment to perform a pull testing campaign utilizing the newest crack detection technology that was specifically targeted towards accurately sizing tilted and skewed crack like features. The authors will briefly discuss the pipeline system and inspection campaign and in detail will discuss the benefits of using technology that has been developed to help pipeline operators better understand the threats in their integrity management program.


Author(s):  
Taylor Shie ◽  
Andrew Lutz ◽  
Paul Taverna

Abstract Pipeline operators have many choices when selecting inline inspection (ILI) vendors and technologies. No single technology has a one hundred percent probability of detection, identification, and sizing for all anomaly types. Operators must match the threats on their system to the existing capabilities of the ILI technologies to achieve the goals defined by the company’s integrity management program. It is sometimes necessary to run multiple technologies to effectively assess all threats in a pipeline. Multiple technologies may be run during the same timeframe or they may be run at different times during the life of the pipeline to meet program goals. Shell Pipeline Company, LP (SPLC) has a pipeline that is comprised of low frequency electric resistance welded (LFERW) pipe from Youngstown Sheet and Tube, seamless pipe from National Tube, double submerged arc welded (DSAW) pipe from Kaiser, and high frequency electric resistance welded (HF-ERW) pipe. The LF-ERW pipe was installed in 1948 while the HF-ERW was installed during relatively recent replacement projects. The DSAW pipe was installed in 1952 with the seamless pipe being installed in both 1948 and 1952. From 2015 through 2018, SPLC executed an extensive integrity management program. This included: an axial magnetic flux leakage (AMFL) inspection, two circumferential magnetic flux leakage (CMFL) inspections, two deformation inspections, an electro-magnetic acoustic transducer (EMAT) inspection, an ultrasonic crack detection (UTCD) inspection, an ultrasonic wall measurement (UTWM) inspection, and a hydrotest. A dig campaign of nearly 100 excavations was completed as a result of these surveys. One of the focuses of the paper will be the comparison of EMAT to UTCD for Likely Cracks, Possible Cracks and Unlikely Cracks that have been field verified. This paper also shares some of the unique anomalies found through the dig campaign identifying the effectiveness of each technology and their combination for integrity purposes. The paper shows the benefits of combining ILI technologies to properly characterize, assess and mitigate reported anomalies and ensure there are no blind spots in the integrity management program. Case studies including dent with gouge (e.g. AMFL + Deformation), manufacturing, and cracking anomalies as well as the analytics of ILI versus field findings are presented and discussed in the paper. The paper concludes with the knowledge creation resulting from multiple ILI technology integration assisted with subject matter expert experience and analytics to provide a robust understanding of unique anomalies in pipelines.


Author(s):  
Marcus LeRoy ◽  
Rogelio Guajardo ◽  
Miguel Santiago Urrea ◽  
Thomas Hennig

Abstract Pipeline operators use different approaches, often in combination, to ensure the safe operation of an asset. Historically, hydrostatic testing is the most accepted methodology for assessing critical flaws in a pipeline system, achieved by stressing the pipeline above the standard operating limits. By design, a release during this test removes a critical flaw from the system. There are significant drawbacks to this type of assessment. Such drawbacks include high costs of implementation, feature growth, previously blunt defects sharpening and system downtime. Driven by the operator (Marathon Pipe Line) to investigate alternative approaches, a consortium of (4) parties formed to develop and validate an alternative and enhanced solution. The research and execution of the project was structured in (4) phases. • Phase I — Determine which crack morphologies are challenging to ILI technology in terms of detection and depth determination and test initial improvements to ILI technology. This included loop testing improved crack detection ILI robots and destructive assessment with pipe samples to identify gaps in ILI technology and analysis techniques. • Phase II — Assess vendor improved ILI technology on the operating pipelines using advanced in the ditch non-destructive evaluation (NDE) methods and destructive testing of pipe samples from the pipelines. Identify the additional improvements if necessary. • Phase III — Implement specific improvements to ILI technology that are completed based on Phase I and II results. Validate the new ILI platform on the specific pipeline. • Phase IV — Determination whether the new ILI platform can provide equivalent pipe seam system reliability to hydrostatic testing. A probabilistic approach will be used that would account for the expected statistical distribution of pipe properties, fatigue crack growth rates, position along the pipeline, and flaw sizes. This paper is a summary of the research and work for this ILI In Lieu of a Hydrostatic Testing initiative.


Author(s):  
Ray Hicks ◽  
Clive Ward

US pipeline integrity management regulations require operators to rank the risks caused by their operations. Many operators use qualitative methods for this risk ranking process. Such methods have several benefits including simplicity and flexibility. Unfortunately, they rely heavily on engineering judgment and produce results that are very specific to the pipeline system(s) being ranked. This makes it extremely difficult to relate the outputs from different systems or companies within an organization. This paper describes the development and application of a risk ranking approach that requires less judgment and provides the user with an estimate of the true risk of operating the pipeline. Quantitative methods, based on an understanding of structural mechanics, are applied to seven of the nine threat categories listed in ASME B31.8S in order to determine the pipeline’s reliability. An assessment of risk to life is achieved by combining the output from structural mechanics models with a quantitative consequence of failure model. The software operates on a GIS platform, making it easier to demonstrate compliance with the integrity data management requirements that are now part of the relevant federal codes. Results produced from the quantitative approach have been compared to those generated by qualitative methods, in a case study. This illustrates some important differences between the two and show that a more rigorous, quantitative approach can provide the operator with significant benefits including the ability to generate meaningful results with less data. In particular, quantitative methods have the potential to allow operators to move towards a more performance-based approach to their ongoing integrity management processes.


Author(s):  
Cameron Rout ◽  
James Mihell ◽  
Keith Adams ◽  
Nathan Len

Reliability analysis has become widely used as a method of accounting for uncertainty in the sizing of metal loss features in pipeline integrity management programs. As inline inspection (ILI) technology for crack detection becomes more widely available, the opportunity to use reliability methods in a manner similar to that already adopted for metal loss features presents itself. Nevertheless, the technical challenges to the application of reliability analysis of cracks are distinct from those that are relevant to the reliability analysis of metal loss features. Calculating the time-dependent threat of failure due to fatigue or corrosion fatigue must address different parameters than it would for metal loss features, and consequently this presents new challenges in developing statistical analysis tools. Such challenges include predicting operational pressure cycling, accounting for uncertainty in ILI crack sizing, and characterizing crack growth behaviour type. This paper provides an overview of some important parameters to be considered in reliability-based fatigue or corrosion fatigue analysis with some examples of how they have been addressed in work to date by Dynamic Risk Assessment Systems, Inc.


2017 ◽  
Vol 1 (20) ◽  
pp. 63-74 ◽  
Author(s):  
Arkadiusz Rychlik ◽  
Krzysztof Ligier

This paper discusses the method used to identify the process involving fatigue cracking of samples on the basis of selected vibration signal characteristics. Acceleration of vibrations has been chosen as a diagnostic signal in the analysis of sample cross section. Signal characteristics in form of change in vibration amplitudes and corresponding changes in FFT spectrum have been indicated for the acceleration. The tests were performed on a designed setup, where destruction process was caused by the force of inertia of the sample. Based on the conducted tests, it was found that the demonstrated sample structure change identification method may be applied to identify the technical condition of the structure in the aspect of loss of its continuity and its properties (e.g.: mechanical and fatigue cracks). The vibration analysis results have been verified by penetration and visual methods, using a scanning electron microscope.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2182
Author(s):  
Baden Parr ◽  
Mathew Legg ◽  
Stuart Bradley ◽  
Fakhrul Alam

Grape yield estimation has traditionally been performed using manual techniques. However, these tend to be labour intensive and can be inaccurate. Computer vision techniques have therefore been developed for automated grape yield estimation. However, errors occur when grapes are occluded by leaves, other bunches, etc. Synthetic aperture radar has been investigated to allow imaging through leaves to detect occluded grapes. However, such equipment can be expensive. This paper investigates the potential for using ultrasound to image through leaves and identify occluded grapes. A highly directional low frequency ultrasonic array composed of ultrasonic air-coupled transducers and microphones is used to image grapes through leaves. A fan is used to help differentiate between ultrasonic reflections from grapes and leaves. Improved resolution and detail are achieved with chirp excitation waveforms and near-field focusing of the array. The overestimation in grape volume estimation using ultrasound reduced from 222% to 112% compared to the 3D scan obtained using photogrammetry or from 56% to 2.5% compared to a convex hull of this 3D scan. This also has the added benefit of producing more accurate canopy volume estimations which are important for common precision viticulture management processes such as variable rate applications.


Author(s):  
Neil Bates ◽  
David Lee ◽  
Clifford Maier

This paper describes case studies involving crack detection in-line inspections and fitness for service assessments that were performed based on the inspection data. The assessments were used to evaluate the immediate integrity of the pipeline based on the reported features and the long-term integrity of the pipeline based on excavation data and probabilistic SCC and fatigue crack growth simulations. Two different case studies are analyzed, which illustrate how the data from an ultrasonic crack tool inspection was used to assess threats such as low frequency electrical resistance weld seam defects and stress corrosion cracking. Specific issues, such as probability of detection/identification and the length/depth accuracy of the tool, were evaluated to determine the suitability of the tool to accurately classify and size different types of defects. The long term assessment is based on the Monte Carlo method [1], where the material properties, pipeline details, crack growth parameters, and feature dimensions are randomly selected from certain specified probability distributions to determine the probability of failure versus time for the pipeline segment. The distributions of unreported crack-related features from the excavation program are used to distribute unreported features along the pipeline. Simulated crack growth by fatigue, SCC, or a combination of the two is performed until failure by either leak or rupture is predicted. The probability of failure calculation is performed through a number of crack growth simulations for each of the reported and unreported features and tallying their respective remaining lives. The results of the probabilistic analysis were used to determine the most effective and economical means of remediation by identifying areas or crack mechanisms that contribute most to the probability of failure.


Sign in / Sign up

Export Citation Format

Share Document