Renewable Biodiesel From CSO: A Fuel Option for Diesel Engines

Solar Energy ◽  
2006 ◽  
Author(s):  
B. Murali Krishna ◽  
J. M. Mallikarjuna

The petroleum-based fuels are limited reserve fuels, with our present known reserves and the growing rate of consumption, it is feared that they are not going to last long. These finite resources of petroleum and highly concentrated in certain regions of the world has given rise to frequent disruptions and uncertainties in its supply and as well as price. This situation has created a problem to increase the prices of these oils. The growing dependence on oil has created great scarcities and hardships with serious economic imbalance. A part from the problem of fast vanishing reserves, Petroleum fueled vehicles discharge significant amount of pollutants. In view of these problems attempts must be made to develop the technology of alternate clean burning fuels. The alternative, which satisfies all these requirements, is bio-diesel. Bio-diesel is methyl or ethyl ester of fatty acid made from virgin or used vegetable oils (both edible and non-edible) and animal fat, by converting the triglyceride oils to methyl (or ethyl) esters with a process known as transesterification. Bio-fuels are important now and offer increase in potential for the future. This paper consists two phases. The phase one dealt with preparation of bio-diesel from Cotton Seed Oil (C.S.O), which is available at cheaper price, as it is byproduct from cotton industries. Its properties were determined experimentally and compared with the conventional diesel fuel. The second phase dealt with conduction of experiments on a single cylinder, 4-stroke, direct injection Diesel Engine without modifications at constant speed 1500 rpm for various loads using 100% bio-diesel and conventional diesel fuel. It noticed that, the performance of the engine is not severely deviated by the substituted renewable biodiesel inaddition considerable decrease in smoke level. It is concluding that the biodiesel is superior fuel from the environmental and performance point of view, addition to this reducing the import of oil and consequentially improving energy security as a renewable alternate fuel.

Author(s):  
Telli Abdelmoutia ◽  
Hamdi Ghassen ◽  
Omri Nazih

This article discusses the issue of inconsistency in responses from various DL-Lite knowledge bases. This inconsistency problem is at the origin of several sources of assertions with different levels of reliability. The various solutions proposed in the literature that have to do with retrieving an exhaustive and coherent list of responses are not satisfactory from the point of view of reliability and performance. The solution that we present to solve this problem is articulated around two phases: the first phase consists of interrogating the different knowledge bases to retrieve all of the possible answers, which may be inconsistent and/or contradictory, and the second phase consists in repairing these inconsistencies and/or contradictions. To do this, we propose an approach based on three algorithms that we developed in this framework: a first algorithm for non-defeat repair, a second algorithm for lexicographic repair and a third algorithm for non-defeat repair based on lexicography of possible inconsistent responses. The experimental study carried out on the different data collections, as well as the analysis of the results obtained, confirm the performance of our approach as well as its efficiency in regards to productivity and complexity in terms of execution time.


Author(s):  
Kui Xu ◽  
Ming Zhang ◽  
Jie Liu ◽  
Nan Sha ◽  
Wei Xie ◽  
...  

Abstract In this paper, we design the simultaneous wireless information and power transfer (SWIPT) protocol for massive multi-input multi-output (mMIMO) system with non-linear energy-harvesting (EH) terminals. In this system, the base station (BS) serves a set of uplink fixed half-duplex (HD) terminals with non-linear energy harvester. Considering the non-linearity of practical energy-harvesting circuits, we adopt the realistic non-linear EH model rather than the idealistic linear EH model. The proposed SWIPT protocol can be divided into two phases. The first phase is designed for terminals EH and downlink training. A beam domain energy beamforming method is employed for the wireless power transmission. In the second phase, the BS forms the two-layer receive beamformers for the reception of signals transmitted by terminals. In order to improve the spectral efficiency (SE) of the system, the BS transmit power- and time-switching ratios are optimized. Simulation results show the superiority of the proposed beam-domain SWIPT protocol on SE performance compared with the conventional mMIMO SWIPT protocols.


Author(s):  
Hyun Kyu Suh ◽  
Hyun Gu Roh ◽  
Chang Sik Lee

The aim of this work is to investigate the effect of the blending ratio and pilot injection on the spray and combustion characteristics of biodiesel fuel and compare these factors with those of diesel fuel in a direct injection common-rail diesel engine. In order to study the factors influencing the spray and combustion characteristics of biodiesel fuel, experiments involving exhaust emissions and engine performance were conducted at various biodiesel blending ratios and injection conditions for engine operating conditions. The macroscopic and microscopic spray characteristics of biodiesel fuel, such as injection rate, split injection effect, spray tip penetration, droplet diameter, and axial velocity distribution, were compared with the results from conventional diesel fuel. For biodiesel blended fuel, it was revealed that a higher injection pressure is needed to achieve the same injection rate at a higher blending ratio. The spray tip penetration of biodiesel fuel was similar to that of diesel. The atomization characteristics of biodiesel show that it has higher Sauter mean diameter and lower spray velocity than conventional diesel fuel due to high viscosity and surface tension. The peak combustion pressures of diesel and blending fuel increased with advanced injection timing and the combustion pressure of biodiesel fuel is higher than that of diesel fuel. As the pilot injection timing is retarded to 15deg of BTDC that is closed by the top dead center, the dissimilarities of diesel and blending fuels combustion pressure are reduced. It was found that the pilot injection enhanced the deteriorated spray and combustion characteristics of biodiesel fuel caused by different physical properties of the fuel.


2020 ◽  
Vol 8 (5) ◽  
pp. 3950-3954

Alternative fuel sources are needed to be developed to meet the escalating demand for fossil fuels. Also from an environmental point of view, these most modern resources of fuels must be environment-friendly. The rapidly increasing consumption of fossil fuel and petroleum products has been a matter of concern for many countries which imports more crude oil. So, there is necessary for the development of new energy sources. The biomass, edible oil, inedible oils from plants and fish fat oil are imperatives and seen to be a potential substitute for diesel fuel. Acid and Base catalyzed transesterification is the most acceptable process for biodiesel production. In this project, an attempt towards finding the effect of alternate fuels as a substitute over diesel and reduce its consumption to lessen the environmental effects. Biodiesel has been extensively used in diesel engines as a partial substitute in the past few decades. The present investigation is carried out with blending up fish oil biodiesel with diesel in varying proportions to test out the emission and performance characteristics of direct injection single cylinder, four strokes, and air-cooled diesel engine. The fish oil biodiesel was produced by the transesterification process and obtained fish oil biodiesel blended with diesel fuel with various propagations of B20, B50, B75 & B100. These blended fuels were further investigated in a diesel engine with variable speeds such as 1000rpm, 1250rpm, 1500rpm, 1720rpm, 2000rpm 2250rpm & 2500rpm. In this comparative study, the effects of fish oil biodiesel fuel blends are compared and evaluated with pure diesel.


2014 ◽  
Vol 592-594 ◽  
pp. 1575-1579 ◽  
Author(s):  
R. Arun ◽  
Muthe Srinivasa Rao ◽  
A. Prabu ◽  
R.B. Anand

An Experimental investigation is conducted to establish the feasibility of using Jatropha biodiesel in Direct Injection Compression Ignition (DICI) engines. While the biodiesel has certain limitations and adverse in terms of poor performance and high level of pollutants in the exhaust of the gases, specified chemical (Propylene Glycol, C3H8O2) and nano(Al2O3) additives are used with Jatropha biodiesel. The experiments are conducted in two phases by using an experimental test rig, which consists of a DICI engine, electric loading device, data acquisition system, and AVL exhaust gas analyzers. In the first phases of experimentation, the performance and emission characteristics of the engine are analyzed by using neat diesel and Jatropha biodiesel and in the second phase of investigation, similar experiments are conducted by using chemical and nanoadditives blended biodiesel. The results of biodiesel are compared with those of neat diesel and it is seen that the performance and emission characteristics of the engine are inferior in the case of biodiesel when compared with neat diesel. However, the results revealed that the working characteristics could be improved by selecting of proper chemical and nanoadditives in right proportions.


2021 ◽  
pp. 157-168
Author(s):  
Kalmer Keerup ◽  
Dan Bogdanov ◽  
Baldur Kubo ◽  
Per Gunnar Auran

AbstractTypically, data cannot be shared among competing organizations due to confidentiality or regulatory restrictions. We present several technological alternatives to solve the problem: secure multi-party computation (MPC), trusted execution environments (TEE) and multi-key fully homomorphic encryption (MKFHE). We compare these privacy-enhancing technologies from deployment and performance point of view and explain how we selected technology and machine learning methods. We introduce a demonstrator built in the DataBio project for securely combining private and public data for planning of fisheries. The secure machine learning of best catch locations is a web solution utilizing Intel® Software Guard Extensions (Intel® SGX)-based TEE and built with the Sharemind HI (Hardware Isolation) development tools. Knowing where to go fishing is a competitive advantage that a fishery is not interested to share with competitors. Therefore, joint intelligence from public and private sector data while protecting secrets of each contributing organization is an important enabler. Finally, we discuss the wider business impact of secure machine learning in situations where data confidentiality is a concern.


2019 ◽  
Vol 15 (2) ◽  
pp. 293-340
Author(s):  
Anne Michaud

When I began this article my main objective was to show why the concept of mitigation of damage, which is so extensively used in common law, was apparently non-existent in civil law. Right from the beginning, however, I found conclusive evidence which proved that the concept of mitigation actually exists in civil law too; my purpose was then transformed into explaining how this concept works in two systems of law that are so different in their approaches and their methodologies. In order to make this study manageable, I have focused on the links between the concept of mitigation and the problem of pecuniary loss following a breach of contract. Consequently, issues pertaining to tort, physical injuries to persons and things, and claims to liquidate sums, as in debt, will be dealt with only incidentally. Regrettably, this course of action will leave open many interesting questions related to mitigation, mainly in tort but also in contract. Nevertheless, I trust that the present study will constitute a useful basis for further analysis on this subject. I have divided this work into two parts, devoted to the two phases of recovery following a breach of contract. The first phase concerns the choice of which losses fall under the protection of the law, among all those claimed by the plaintiff. I propose to call this phase measuring the extent of the loss. The second phase involves the determination of what the defendant will have to do in order to compensate the plaintiff; when this compensation takes a pecuniary form it involves the assessment of the pecuniary value of the loss. The first of these phases primarily concerns the extent of losses and the question of what damage counts for compensation; this particular aspect of the issue of mitigation is the subject of Part I of this article. The connection between mitigation and the pecuniary evaluation of a plaintiff's damages is examined in Part II where I focus on the effects of inflation and other factors that influence the cost of compensation. Finally, from a comparative point of view, one of the main interests of the present study lies in observing that the concept of mitigation has achieved a different status in civil law and in common law. The conclusion of this work explores this situation, and aims at explaining the historical and juridical circumstances that may have caused common law to attain higher levels of generality and of abstraction than civil law with regard to the issue of mitigation.


2021 ◽  
pp. 1-27
Author(s):  
Ramachander J ◽  
Santhosh Kumar Gugulothu

Abstract Biofuels are considered as one of the best viable and inexhaustible alternatives to conventional diesel fuel. Alcohols have become very important and popular in the present scenario due to their peculiar fuel properties and production nature. This study examines the effect of n-amyl alcohol and exhaust gas recirculation of 10% and 20% on various engine characteristics of Common Rail Direct Injection (CRDI) compression ignition engine. The proportion of n-amyl alcohol varies from 5% to 25% in 5% step (by volume). The obtained results show that diesel/n-amyl alcohol blends decrease the mean gas temperature and cylinder pressure, which is 1.88% and 4.25% less at 75% load for n-amyl alcohol (25%) with conventional diesel fuel. The duration of combustion has shown a hike of 4.66°CA for 25% n-amyl alcohol (at 75% load) compared to conventional diesel fuel. However, the cumulative heat release rate improved by 12.95% higher for 25% n-amyl alcohol at 75% load, the reason for the same is due to the extended delay in ignition. While n-amyl alcohol was used, the emission of nitrogen oxide emissions decreased considerably. However, the hydrocarbon (HC) (7-9%) and carbon monoxide (CO) (6-8%) emissions are increased due to inferior fuel properties like high latent heat evaporation of n-amyl alcohol. Compared with other blends, n-amyl alcohol (5%) produced results comparable to conventional diesel fuel, which is 3.6% higher in BSFC, 2.37 % higher BTE, and 33.33% higher CO emissions 18.18% more in HC emission, and 17.55% less NOx emission. Without further modification, we can use 25% n-amyl alcohol in the combustion ignition engines. From this evidence, we can summarize that n-amyl alcohol is a biofuel that is both renewable and sustainable, and also it considerably reduces harmful nitrogen oxide emissions. The performance, if needed, can be improved by changing the parameters of the engine.


Author(s):  
N. V. Mahalakshmi ◽  
R. Karthikeyan

Pinus product (Turpentine) has been proposed as an alternate to petro fuels since the invention of S.I. engine. In general, due to higher volatility, turpentine has been used only in the S.I. engine. But the present work proves that based on the property of turpentine (Table – 1), it is a very good substitute for diesel fuel. The low cetane number of turpentine oil had prevented the use of 100% turpentine oil in diesel engine. The present work explores the performance, emission and combustion characteristics of turpentine diesel blends and its suitability with C.I. engine. The 20% turpentine 80% diesel blend has an equal combustion and performance characteristics with that of diesel fuel. The experimental results show that some of the toxic gases like CO, UBHC and soot are decreased compared to diesel baseline. In particular around 45% to 50% smoke reduction is obtained with higher turpentine blends. Also it proves that 20% addition of turpentine into conventional diesel fuel improve the performance, combustion, and emission to a considerable limit.


Sign in / Sign up

Export Citation Format

Share Document