High-Speed Machining of Ti-6Al-4V With a Micro Textured Cutting Tool Focusing on Coolant Behaviors

Author(s):  
Mitsuru Hasegawa ◽  
Tatsuya Sugihara

Abstract In the cutting of Ti-6Al-4V alloy, the cutting speed is limited as a high cutting temperature leads to severe tool wear and short tool life, resulting in poor production efficiency. However, some recent literature has reported that various beneficial effects can be provided by forming micro-textures on the tool surface in the metal cutting process. In this study, in order to achieve high-performance machining of Ti-6Al-4V, we first investigated the mechanism of the tool failure process for a cemented carbide cutting tool in high-speed turning of Ti-6Al-4V. Based on the results, cutting tools with micro textured surfaces were developed under the consideration of a cutting fluid action. A series of experiments showed that the textured rake face significantly suppresses both crater wear and flank wear. In addition, optimum texture structures and the mechanism of the texture effects in high-speed machining of Ti-6Al-4V alloy were discussed.

Author(s):  
Mitsuru Hasegawa ◽  
Tatsuya Sugihara

Abstract In cutting of Ti-6Al-4V alloy, the cutting speed is limited since a high cutting temperature leads to severe tool wear and short tool life, resulting in poor production efficiency. On the other hand, some recent literature has reported that various beneficial effects can be provided by forming micro-textures on the tool surface in the metal cutting process. In this study, in order to achieve high-performance machining of Ti-6Al-4V, we first investigated the mechanism of the tool failure process for a cemented carbide cutting tool in high-speed turning of Ti-6Al-4V. Based on the results, cutting tools with micro textured surfaces were developed under the consideration of a cutting fluid action. A series of experiments showed that the textured rake face successfully decreases the cutting temperature, resulting in a significant suppression of both crater wear and flank wear. In addition, the temperature zone where the texture tool is effective in terms of the tool life in the Ti-6Al-4V cutting was discussed.


2021 ◽  
Vol 8 ◽  
pp. 13
Author(s):  
Pralhad B. Patole ◽  
Vivek V. Kulkarni ◽  
Sudhir G. Bhatwadekar

In any metal cutting machining operation, the cutting fluid plays important role by cooling the cutting tool and the surface of the work piece, also chips are removed from heat affected zone. However, misuse of the cutting fluid and wrong methods of its disposal can affect human health and the environment badly. This paper presents a review of the important research papers published regarding the MQL-based application of mineral oils, vegetable oils and nano fluid-based cutting fluids for different machining processes, such as, drilling, turning, milling and grinding, etc. Most of the experimental studies have shown that application of MQL produces surface better than the flood and dry machining. In turning operation, parameters such as cutting speed, depth of cut, feed rate and tool nose radius have great impact on the surface finish. During high speed turning of steel inherently generates high cutting zone temperature. Such high temperature causes dimensional deviation and failure of cutting tools, surface and subsurface micro cracks, corrosion etc. Therefore, with proper selection of the MQL system and the cutting parameters, it is possible for MQL machining with minimum cost and less quantity of coolant to obtain better conditions, in terms of lubricity, tool life, cutting temperature and surface finish. The findings of this study show that MQL with nano fluid can substitute the flood lubrication for better surface finish.


2010 ◽  
Vol 139-141 ◽  
pp. 805-808 ◽  
Author(s):  
Yang Qiao ◽  
Xing Ai ◽  
Zhan Qiang Liu ◽  
Jun Zhao

An experimental investigation was carried out to understand the behavior of a powder metallurgy nickel-based superalloy when machined with sialon ceramic insert tools. Turning experiments were carried out at different cutting speeds and feed rates while depth of cut was kept constant. Cutting tool performance was evaluated with respect to temperature and cutting forces generated during turning, and tool wear. The sialon ceramic cutting tool showed high performance when increasing cutting speed, the machining experiments showed that sialon ceramic tools performed better at cutting speed up to 80 m/min. Abrasion and adhesion was the dominant wear mechanisms. Chipping on the tool rake and flank faces, as well as catastrophic failure under thermal shock and mechanical loading, was also observed in experiments. As cutting temperature was very high when turning powder metallurgy nickel-based superalloy, good high-temperature strength and thermal shock resistance were indispensable to the cutting tools for machinging this kind of material.


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5677
Author(s):  
Elshaimaa Abdelnasser ◽  
Azza Barakat ◽  
Samar Elsanabary ◽  
Ahmed Nassef ◽  
Ahmed Elkaseer

This article presents the results of an experimental investigation into the machinability of Ti6Al4V alloy during hard turning, including both conventional and high-speed machining, using polycrystalline diamond (PCD) inserts. A central composite design of experiment procedure was followed to examine the effects of variable process parameters; feed rate, cutting speed and depth of cut (each at five levels) and their interaction effects on surface roughness and cutting temperature as process responses. The results revealed that cutting temperature increased with increasing cutting speed and decreasing feed rate in both conventional and high-speed machining. It was found that high-speed machining showed an average increase in cutting temperature of 65% compared with conventional machining. Nevertheless, high-speed machining showed better performance in terms of lower surface roughness despite using higher feed rates compared to conventional machining. High-speed machining of Ti6Al4V showed an improvement in surface roughness of 11% compared with conventional machining, with a 207% increase in metal removal rate (MRR) which offered the opportunity to increase productivity. Finally, an inverse relationship was verified between generated cutting temperature and surface roughness. This was attributed mainly to the high cutting temperature generated, softening, and decreasing strength of the material in the vicinity of the cutting zone which in turn enabled smoother machining and reduced surface roughness.


2006 ◽  
Vol 315-316 ◽  
pp. 459-463 ◽  
Author(s):  
Yi Wan ◽  
Zhan Qiang Liu ◽  
Xing Ai

High-speed machining (HSM) has received great interest because it leads to an increase of productivity and a better workpiece surface quality. However, tool wear increases dramatically due to the high temperature at the tool/workpiece interface. Proper selection of cutting tool and cutting parameters is the key process in high-speed machining. In this paper, experiments have been conducted to high speed milling pearlitic cast iron with different tool materials, including polycrystalline cubic boron nitrogen, ceramics and coated cemented carbides. Wear curves and tool life curves have been achieved at various cutting speeds with different cutting tools. If efficiency is considered, Polycrystalline Cubic Boron Nitrogen cutting tool materials are preferred in finish and semi-finish machining. According to the different hardness of cast iron, the appropriate range of cutting speed is from 850 m/min to 1200m/min.


2014 ◽  
Vol 996 ◽  
pp. 603-608
Author(s):  
Johannes Kümmel ◽  
Jens Gibmeier ◽  
Volker Schulze ◽  
Alexander Wanner

The tool and workpiece surface layer states of the tribosystem uncoated WC-Co cutting tools vs. normalised SAE 1045 workpiece material are studied in detail for a dry metal cutting process. Within the system the cutting parameters (cutting speed, feed rate, cutting depth) determine the wear state of the cutting tool and the resulting surface layer state (residual stress) in the workpiece. As the built-up edge can be used as a possible wear protecting layer [1] the influence of built-up edge and wear behaviour of the cutting tool was examined with respect to the workpiece surface layer state for knowledge based metal cutting processing. Small compressive stresses (-60-80 MPa) are induced in the surface layer, that are nearly homogeneous for the highest built-up edge, which lead to the lowest tool wear in combination with lowest cutting temperature.


2014 ◽  
Vol 592-594 ◽  
pp. 316-320 ◽  
Author(s):  
N. Govindaraju ◽  
Ahmed L. Shakeel ◽  
M. Pradeepkumar

The usage of a conventional cutting fluid in the metal cutting operations gives harmful effect for environment and to the operator’s health. In this study, experimental investigations were carried out in a drilling operation on aluminium alloy material using a liquid nitrogen (LN2) coolant. The variables in the experiment were, cutting speed and feed, the drilling depth was maintained constant. For each feed rate (0.02, 0.05 & 0.08 mm/rev) three holes were drilled for cutting speeds 110, 130 & 150 m/min. The cutting temperature and thrust force were recorded. The cutting temperature and thrust force were reduced, when cutting speed was increased. The hole quality parameters like cylindricity, circularity and perpendicularity were analyzed using CMM.


2012 ◽  
Vol 723 ◽  
pp. 67-71 ◽  
Author(s):  
Guo Sheng Su ◽  
Zhan Qiang Liu

Spherical chip appears frequently in high speed grinding of metals. It is attributed to the melt or oxidation of the small chips in grinding. Spherical chip in machining of steels is observed when the cutting speed is high enough. To clarify the formation mechanism of spherical chip in metal cutting, high speed machining of AerMet100 at cutting speeds from 40 m/min to 3000m/min was investigated. Spherical chip of AerMet100 was obtained at cutting speed range 2000-3000m/min. Optical and SEM (Scanning Electron Microscope) observations of the spherical chip was carried out. The chemical composition of the spherical ship was analyzed through X-ray energy dispersive spectroscopy (XEDS) analysis. The formation mechanism of the spherical chip was proposed. The results showed that the spherical shape of chip is due to the intense reaction between Fe of workpiece and O2 in the air accompanying which large mount of heat is released to melt the oxide into small spheres. The formation of the spherical chip is highly influenced by cutting speed and the size of the chip (surface-volume ratio).


2021 ◽  
Vol 248 ◽  
pp. 04018
Author(s):  
Sergey Grigoriev ◽  
Mars Migranov ◽  
Abdumalik Seitkulov

In the conditions of high-speed processing of parts of complex configuration, with a large end and longitudinal length, from hard-to-work steels and alloys, it is difficult to ensure the wear resistance of the cutting tool in the aisles of one technological passage. To ensure the appropriate quality indicators of the surface layer, it is impossible to replace a worn-out cutting tool. In connection with the above, the problem of ensuring the operability (wear resistance) of the cutting tool is acute. The results of theoretical and experimental studies of contact phenomena in blade cutting based on the thermodynamics of non – equilibrium processes and from the standpoint of self-organization of the tribosystem are presented. the developed thermodynamic model of blade processing with variable cutting modes (non-stationary) allows to minimize the wear of the cutting tool and generally increase production efficiency by accelerating the drive of the main movement of the metal-cutting machine.


2012 ◽  
Vol 268-270 ◽  
pp. 496-499 ◽  
Author(s):  
Wei Fan ◽  
Xin Liu

The cutting principle of high speed machining is analyzed, and the key technology of building high speed cutting finite element simulation model is systemic explained. By simplifying high speed cutting process, using the fastest solution of nonlinear finite element software ADINA which is development in recent years to establish the three dimensional finite element model of high speed metal cutting, and to predict the cutting force of different cutting tool geometry parameter combination of high speed cutting process, the high speed cutting processing cutting tool analysis and processing parameter optimization analysis method are put forwarded, so as to provide a new tool for the research of high speed machining process and provide basis for the cutting tool choice during high-speed nc cutting process.


Sign in / Sign up

Export Citation Format

Share Document