Experimental Analysis on Spherical Chips in High-Speed Machining of Hardened AerMet100

2012 ◽  
Vol 723 ◽  
pp. 67-71 ◽  
Author(s):  
Guo Sheng Su ◽  
Zhan Qiang Liu

Spherical chip appears frequently in high speed grinding of metals. It is attributed to the melt or oxidation of the small chips in grinding. Spherical chip in machining of steels is observed when the cutting speed is high enough. To clarify the formation mechanism of spherical chip in metal cutting, high speed machining of AerMet100 at cutting speeds from 40 m/min to 3000m/min was investigated. Spherical chip of AerMet100 was obtained at cutting speed range 2000-3000m/min. Optical and SEM (Scanning Electron Microscope) observations of the spherical chip was carried out. The chemical composition of the spherical ship was analyzed through X-ray energy dispersive spectroscopy (XEDS) analysis. The formation mechanism of the spherical chip was proposed. The results showed that the spherical shape of chip is due to the intense reaction between Fe of workpiece and O2 in the air accompanying which large mount of heat is released to melt the oxide into small spheres. The formation of the spherical chip is highly influenced by cutting speed and the size of the chip (surface-volume ratio).

2017 ◽  
Vol 889 ◽  
pp. 84-89
Author(s):  
Pandithevan Ponnusamy ◽  
Mullapudi Joshi

In high speed machining, to dynamically control the mechanical behaviour of the materials, it is essential to control temperature, stress and strain by appropriate speed, feed and depth of cut. In the present work, to predict the mechanical behaviour of Ti6Al4V and 316L steel bio-materials an explicit dynamic analysis with different cutting speeds was carried out. Orthogonal cutting of 316L steel and Ti6Al4V materials with 720 m/min, 900 m/min and 1200 m/min cutting speeds was performed, and the distribution of stress and temperature was investigated using Jonson-Cook material model. Additionally, the work aimed at determining the effect of cutting speed on work piece temperature, when cutting is carried out continuously. From the investigation, it was found that, while machining Ti6Al4V material, for the increase in cutting speed there was increase in tool-chip interface temperature. Specifically, this could found till the cutting speed 900 m/min. But, there was a decrease in tool-chip interface temperature for the increase in speed from 900 m/min to 1200 m/min. Similarly for 316L steel, the tool-chip interface temperature increased when increasing the cutting speed till 900 m/min. But reduction in temperature from 650 °C to 500 °C for steel and 1028 °C to 990 °C for Ti6Al4V were found, when the cutting speed increased from 900 m/min to 1200 m/min. The study can be used to conclude, at what temperature range the adoption of material with controlled shape and geometry is possible for potential applications like, prosthetic design and surgical instruments prior to fabrications.


2011 ◽  
Vol 188 ◽  
pp. 578-583 ◽  
Author(s):  
Toshiyuki Obikawa ◽  
Masahiro Anzai ◽  
Tsuneo Egawa ◽  
Norihiko Narutaki ◽  
Kazuhiro Shintani ◽  
...  

This paper describes strong nonlinearity in log V-log L relationship, which is often found in machining of supperalloys, titanium alloys, hardened steels, cast irons, etc. The nonlinearity plays an important and favorable role in extension of life-span cutting distance at higher cutting speeds; that is, in a certain range of cutting speed, life-span cutting distance increases with cutting speed. Results of tool wear in a sliding test and cutting experiments, which showed the evidences of strong nonlinearity, were investigated and the mechanisms causing the nonlinearity were discussed.


2014 ◽  
Vol 939 ◽  
pp. 194-200
Author(s):  
Shamsuddin Sulaiman ◽  
Mohd K.A. Ariffin ◽  
A. Roshan

A finite element model (FEM) of an orthogonal metal-cutting process is used to study the influence of tool rake angle on the cutting force and tool temperature. The model involves Johnson-Cook material model and Coulomb’s friction law. A tool rake angle ranging from 0° to 20° and a cutting speed ranging from 300 to 600 m/min were considered in this simulation. The results of this simulation work are consistent optimum tool rake angle for high speed machining (HSM) of AISI 1045 medium carbon steel. It was observed that there was a suitable rake angle between 10° and 18° for cutting speeds of 300 and 433 m/min where cutting force and temperature were lowest. However, there was not optimum rake angle for cutting speeds of 550 and 600 m/min. This paper can contribute in optimization of cutting tool for metal cutting process.


1998 ◽  
Vol 120 (1) ◽  
pp. 169-172 ◽  
Author(s):  
G. Sutter ◽  
A. Molinari ◽  
L. Faure ◽  
J. R. Klepaczko ◽  
D. Dudzinski

A new high speed machining experiment is designed to obtain orthogonal cutting in a wide range of cutting speeds from 7 m/s to 100 m/s. Quasi-stationary cutting conditions are obtained. The measurement of the longitudinal cutting force reveals the existence of an optimal cutting speed for which the energy consumption is minimum. The genuine tool-workpiece material interaction can be analyzed with that experimental device.


Author(s):  
Mitsuru Hasegawa ◽  
Tatsuya Sugihara

Abstract In the cutting of Ti-6Al-4V alloy, the cutting speed is limited as a high cutting temperature leads to severe tool wear and short tool life, resulting in poor production efficiency. However, some recent literature has reported that various beneficial effects can be provided by forming micro-textures on the tool surface in the metal cutting process. In this study, in order to achieve high-performance machining of Ti-6Al-4V, we first investigated the mechanism of the tool failure process for a cemented carbide cutting tool in high-speed turning of Ti-6Al-4V. Based on the results, cutting tools with micro textured surfaces were developed under the consideration of a cutting fluid action. A series of experiments showed that the textured rake face significantly suppresses both crater wear and flank wear. In addition, optimum texture structures and the mechanism of the texture effects in high-speed machining of Ti-6Al-4V alloy were discussed.


Author(s):  
Y. J. Lin ◽  
Samir A. Khrais

The tribological influences of PVD-applied TiAlN coatings on the wear of cemented carbide inserts and the microstructure wear behaviors of the coated tools under dry and wet machining are investigated. The turning test was conducted with variable high cutting speeds ranging from 210 m/min to 410m/min. The analyses based on the experimental results lead to strong evidences that conventional coolant has a retarded effect on TiAlN coatings under high-speed machining. Microwear mechanisms identified in the tests through SEM micrographs include edge chipping, micro-abrasion, micro-fatigue, micro-thermal, and micro-attrition. These micro-structural variations of coatings provide structure-physical alterations as the measures for wear alert of TiAlN coated tool inserts under high speed machining of steels.


Author(s):  
Muataz Al Hazza ◽  
Khadijah Muhammad

High speed machining has many advantages in reducing time to the market by increasing the material removal rate. However, final surface quality is one of the main challenges for manufacturers in high speed machining due to the increasing of flank wear rate. In high speed machining, the cutting zone is under high pressure associated with high temperature that lead to increasing of the flank wear rate in which affect the final quality of the machined surface. Therefore, one of the main concerns to the manufacturer is to predict the flank wear to estimate and predict the surface roughness as one of the main outputs of the machining processes. The aim of this study is to determine experimentally the optimum cutting parameters: depth of cut, cutting speed (Vc) and feed rate (f) that maintaining low flank wear (Vb). Taguchi method has been applied in this experiment. The Taguchi method has been universally used in engineering analysis.  JMP statistical analysis software is used to analyse statically the development of flank wear rate during high speed milling of hardened steel AISI D2 to 60 HRD. The experiment was conducted in the following boundaries: cutting speed 200-400 m/min, feed rate of 0.01-0.05 mm/tooth and depth of cut of 0.1-0.2 mm. Analysis of variance ANOVA was conducted as one of important tool for statistical analysis. The result showed that cutting speed is the most influential input factors with 70.04% contribution on flank wear.


2012 ◽  
Vol 523-524 ◽  
pp. 1041-1046 ◽  
Author(s):  
Tappei Higashi ◽  
Masato Sando ◽  
Jun Shinozuka

High-speed orthogonal cutting experiments with cutting speeds of up to 200 m/s with a high-speed impact cutting tester of air-gun type are attempted. In this tester, a light projectile with a small built-in cutting tool is loaded into a tube, being accelerated by a compressed gas. The projectile captures the chip that is indispensable to analyze the cutting mechanism. The projectile holding the chip is decelerated by another compressed gas just after finishing the cutting, being stopped without damage in the tube. Successful experiment can be accomplished by setting adequate values of the operation parameters for the experiment, which are the pressure of each gas and the opening and shutting time of the solenoid-controlled valve for each compressed gas. In order to determine the adequate values of these parameters, a ballistic simulator that simulates the velocity and position of the projectile traveling in the tube is developed. By setting the values of these parameters obtained by the simulator, the cutting speed of 200 m/s is achieved when the ambient pressure is set to be a vacuum and helium is used for each compressed gas. This paper describes the ballistic simulator developed and shows the experimental results of the high-speed cutting of aluminum alloy A2017.


2006 ◽  
Vol 315-316 ◽  
pp. 140-144 ◽  
Author(s):  
Su Yu Wang ◽  
Xing Ai ◽  
Jun Zhao ◽  
Z.J. Lv

An orthogonal cutting model was presented to simulate high-speed machining (HSM) process based on metal cutting theory and finite element method (FEM). The residual stresses in the machined surface layer were obtained with various cutting speeds using finite element simulation. The variations of residual stresses in the cutting direction and beneath the workpiece surface were studied. It is shown that the thermal load produced at higher cutting speed is the primary factor affecting the residual stress in the machined surface layer.


2012 ◽  
Vol 557-559 ◽  
pp. 1364-1368
Author(s):  
Yong Feng ◽  
Mu Lan Wang ◽  
Bao Sheng Wang ◽  
Jun Ming Hou

High-speed metal cutting processes can cause extremely rapid heating of the work material. Temperature on the machined surface is critical for surface integrity and the performance of a precision component. However, the temperature of a machined surface is challenging for in-situ measurement.So, the finite element(FE) method used to analyze the unique nonlinear problems during cutting process. In terms of heat-force coupled problem, the thermo-plastic FE model was proposed to predict the cutting temperature distribution using separated iterative method. Several key techniques such as material constitutive relations, tool-chip interface friction and separation and damage fracture criterion were modeled. Based on the updated Lagrange and arbitrary Lagrangian-Eulerian (ALE) method, the temperature field in high speed orthogonal cutting of carbon steel AISI-1045 were simulated. The simulated results showed good agreement with the experimental results, which validated the precision of the process simulation method. Meanwhile, the influence of the process variables such as cutting speed, cutting depth, etc. on the temperature distribution was investigated.


Sign in / Sign up

Export Citation Format

Share Document