Design for Manufacturability in Additive Manufacturing Using a Graph Based Approach

Author(s):  
Rajit Ranjan ◽  
Rutuja Samant ◽  
Sam Anand

Additive Manufacturing (AM) processes are used to fabricate complex parts using a layer by layer approach. This enables designers to be more creative with their designs and build parts which may be difficult to manufacture using conventional processes. However, as AM is in its infancy, relevant literature with respect to design guidelines for AM is not readily available. This research proposes a novel approach to implement design guidelines in AM using a systematic graph based approach. These design rules will assist designers to come up with efficient part designs that can be manufactured with minimum part errors. The design rules are formulated by studying the relationship between input part geometry and AM process parameters. A feature graph based design analysis method is proposed along with a Producibility Index (PI) which is used to compare the designs. Modifications in part design based on these rules and their comparison is presented in the form of three case studies.

Author(s):  
Rajit Ranjan ◽  
Rutuja Samant ◽  
Sam Anand

Additive manufacturing (AM) processes are used to fabricate complex geometries using a layer-by-layer material deposition technique. These processes are recognized for creating complex shapes which are difficult to manufacture otherwise and enable designers to be more creative with their designs. However, as AM is still in its developing stages, relevant literature with respect to design guidelines for AM is not readily available. This paper proposes a novel design methodology which can assist designers in creating parts that are friendly to additive manufacturing. The research includes formulation of design guidelines by studying the relationship between input part geometry and AM process parameters. Two cases are considered for application of the developed design guidelines. The first case presents a feature graph-based design improvement method in which a producibility index (PI) concept is introduced to compare AM friendly designs. This method is useful for performing manufacturing validation of pre-existing designs and modifying it for better manufacturability through AM processes. The second approach presents a topology optimization-based design methodology which can help designers in creating entirely new lightweight designs which can be manufactured using AM processes with ease. Application of both these methods is presented in the form of case studies depicting design evolution for increasing manufacturability and associated producibility index of the part.


2021 ◽  
Vol 1 ◽  
pp. 231-240
Author(s):  
Laura Wirths ◽  
Matthias Bleckmann ◽  
Kristin Paetzold

AbstractAdditive Manufacturing technologies are based on a layer-by-layer build-up. This offers the possibility to design complex geometries or to integrate functionalities in the part. Nevertheless, limitations given by the manufacturing process apply to the geometric design freedom. These limitations are often unknown due to a lack of knowledge of the cause-effect relationships of the process. Currently, this leads to many iterations until the final part fulfils its functionality. Particularly for small batch sizes, producing the part at the first attempt is very important. In this study, a structured approach to reduce the design iterations is presented. Therefore, the cause-effect relationships are systematically established and analysed in detail. Based on this knowledge, design guidelines can be derived. These guidelines consider process limitations and help to reduce the iterations for the final part production. In order to illustrate the approach, the spare parts production via laser powder bed fusion is used as an example.


2021 ◽  
Author(s):  
Fábio Silva Cerejo ◽  
Daniel Gatões ◽  
Teresa Vieira

Abstract Additive manufacturing (AM) of metallic powder particles has been establishing itself as sustainable, whatever the technology selected. Material Extrusion (MEX) integrates the ongoing effort to improve AM sustainability, in which low-cost equipment is associated with a decrease of powder waste during manufacturing. MEX has been gaining increasing interest for building 3D functional/structural metallic parts because it incorporates the consolidated knowledge from powder injection moulding/extrusion feedstocks into the AM scope—filament extrusion layer-by-layer. Moreover, MEX as an indirect process can overcome some of the technical limitations of direct AM processes (laser/electron-beam-based) regarding energy-matter interactions. The present study reveals an optimal methodology to produce MEX filament feedstocks (metallic powder, binder and additives), having in mind to attain the highest metallic powder content. Nevertheless, the main challenges are also to achieve high extrudability and a suitable ratio between stiffness and flexibility. The metallic powder volume content (vol.%) in the feedstocks was evaluated by the critical powder volume concentration (CPVC). Subsequently, the rheology of the feedstocks was established by means of the mixing torque value, which is related to the filament extrudability performance.


Author(s):  
Ganzi Suresh

Additive manufacturing (AM) is also known as 3D printing and classifies various advanced manufacturing processes that are used to manufacture three dimensional parts or components with a digital file in a sequential layer-by-layer. This chapter gives a clear insight into the various AM processes that are popular and under development. AM processes are broadly classified into seven categories based on the type of the technology used such as source of heat (ultraviolet light, laser) and type materials (resigns, polymers, metal and metal alloys) used to fabricate the parts. These AM processes have their own merits and demerits depending upon the end part application. Some of these AM processes require extensive post-processing in order to get the finished part. For this process, a separate machine is required to overcome this hurdle in AM; hybrid manufacturing comes into the picture with building and post-processing the part in the same machine. This chapter also discusses the fourth industrial revolution (I 4.0) from the perspective of additive manufacturing.


2021 ◽  
Vol 13 (4) ◽  
pp. 167-180
Author(s):  
Andra TOFAN-NEGRU ◽  
Cristian BARBU ◽  
Amado STEFAN ◽  
Ioana-Carmen BOGLIS

Recently, additive manufacturing (AM) processes have expanded rapidly in various fields of the industry because they offer design freedom, involve layer-by-layer construction from a computerized 3D model (minimizing material consumption), and allow the manufacture of parts with complex geometry (thus offering the possibility of producing custom parts). Also, they provide the advantage of a short time to make the final parts, do not involve the need for auxiliary resources (cutting tools, lighting fixtures or coolants) and have a low impact on the environment. However, the aspects that make these technologies not yet widely used in industry are poor surface quality of parts, uncertainty about the mechanical properties of products and low productivity. Research on the physical phenomena associated with additive manufacturing processes is necessary for proper control of the phenomena of melting, solidification, vaporization and heat transfer. This paper addresses the relevant additive manufacturing processes and their applications and analyzes the advantages and disadvantages of AM processes compared to conventional production processes. For the aerospace industry, these technologies offer possibilities for manufacturing lighter structures to reduce weight, but improvements in precision must be sought to eliminate the need for finishing processes.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5370
Author(s):  
Geir Langelandsvik ◽  
Odd M. Akselsen ◽  
Trond Furu ◽  
Hans J. Roven

Processing of aluminum alloys by wire arc additive manufacturing (WAAM) gained significant attention from industry and academia in the last decade. With the possibility to create large and relatively complex parts at low investment and operational expenses, WAAM is well-suited for implementation in a range of industries. The process nature involves fusion melting of a feedstock wire by an electric arc where metal droplets are strategically deposited in a layer-by-layer fashion to create the final shape. The inherent fusion and solidification characteristics in WAAM are governing several aspects of the final material, herein process-related defects such as porosity and cracking, microstructure, properties, and performance. Coupled to all mentioned aspects is the alloy composition, which at present is highly restricted for WAAM of aluminum but received considerable attention in later years. This review article describes common quality issues related to WAAM of aluminum, i.e., porosity, residual stresses, and cracking. Measures to combat these challenges are further outlined, with special attention to the alloy composition. The state-of-the-art of aluminum alloy selection and measures to further enhance the performance of aluminum WAAM materials are presented. Strategies for further development of new alloys are discussed, with attention on the importance of reducing crack susceptibility and grain refinement.


2021 ◽  
Vol 11 (01) ◽  
pp. 70-75
Author(s):  
Lakshmi Usha Ayalasomayajula ◽  
Kishore Pathivada ◽  
Radha Rani Earle ◽  
A.V.S. Ksheera Bhavani

Author(s):  
Reza Yavari ◽  
Kevin D. Cole ◽  
Prahalad Rao

Abstract The goal of this work is to predict the effect of part geometry and process parameters on the instantaneous spatial distribution of heat, called the heat flux or thermal history, in metal parts as they are being built layer-by-layer using additive manufacturing (AM) processes. In pursuit of this goal, the objective of this work is to develop and verify a graph theory-based approach for predicting the heat flux in metal AM parts. This objective is consequential to overcome the current poor process consistency and part quality in AM. One of the main reasons for poor part quality in metal AM processes is ascribed to the heat flux in the part. For instance, constrained heat flux because of ill-considered part design leads to defects, such as warping and thermal stress-induced cracking. Existing non-proprietary approaches to predict the heat flux in AM at the part-level predominantly use mesh-based finite element analyses that are computationally tortuous — the simulation of a few layers typically requires several hours, if not days. Hence, to alleviate these challenges in metal AM processes, there is a need for efficient computational thermal models to predict the heat flux, and thereby guide part design and selection of process parameters instead of expensive empirical testing. Compared to finite element analysis techniques, the proposed mesh-free graph theory-based approach facilitates layer-by-layer simulation of the heat flux within a few minutes on a desktop computer. To explore these assertions we conducted the following two studies: (1) comparing the heat diffusion trends predicted using the graph theory approach, with finite element analysis and analytical heat transfer calculations based on Green’s functions for an elementary cuboid geometry which is subjected to an impulse heat input in a certain part of its volume, and (2) simulating the layer-by-layer deposition of three part geometries in a laser powder bed fusion metal AM process with: (a) Goldak’s moving heat source finite element method, (b) the proposed graph theory approach, and (c) further comparing the heat flux predictions from the last two approaches with a commercial solution. From the first study we report that the heat flux trend approximated by the graph theory approach is found to be accurate within 5% of the Green’s functions-based analytical solution (in terms of the symmetric mean absolute percentage error). Results from the second study show that the heat flux trends predicted for the AM parts using graph theory approach agrees with finite element analysis with error less than 15%. More pertinently, the computational time for predicting the heat flux was significantly reduced with graph theory, for instance, in one of the AM case studies the time taken to predict the heat flux in a part was less than 3 minutes using the graph theory approach compared to over 3 hours with finite element analysis. While this paper is restricted to theoretical development and verification of the graph theory approach for heat flux prediction, our forthcoming research will focus on experimental validation through in-process sensor-based heat flux measurements.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Damien Chaney ◽  
Julien Gardan ◽  
Julien De Freyman

Purpose The purpose of this paper is to present the relationship implications of additive manufacturing (AM), which has the ability to produce layer-by-layer three-dimensional complex products by adding material in comparison to traditional manufacturing processes which remove material – for industrial marketing. Design/methodology/approach After presenting the literature on customer relationships and digital technologies in business-to-business, the study uses a “zoom-out” and “zoom-in” perspective to review the extant literature on AM and then makes study propositions for industrial marketing. Findings Through the adoption of AM technologies, the study suggests that firms can improve their level of servitization through customized products, offer more sustainable value propositions and empower their customers through the sale of digital files, which can be considered as levers to strengthen relationships with customers. Research limitations/implications This paper makes several propositions regarding the relationship implications of AM for industrial marketing that further research should test. Practical implications This paper highlights the relational benefits that adopting AM may represent for companies. Originality/value While AM which is considered as an industrial revolution has generated a wide body of research in engineering and operations and technology management sciences, its impact on industrial marketing remains understudied.


Author(s):  
Rohan Prabhu ◽  
Scarlett R. Miller ◽  
Timothy W. Simpson ◽  
Nicholas A. Meisel

Additive Manufacturing (AM) is a novel process that enables the manufacturing of complex geometries through layer-by-layer deposition of material. AM processes provide a stark contrast to traditional, subtractive manufacturing processes, which has resulted in the emergence of design for additive manufacturing (DfAM) to capitalize on AM’s capabilities. In order to support the increasing use of AM in engineering, it is important to shift from the traditional design for manufacturing and assembly mindset, towards integrating DfAM. To facilitate this, DfAM must be included in the engineering design curriculum in a manner that has the highest impact. While previous research has systematically organized DfAM concepts into process capability-based (opportunistic) and limitation-based (restrictive) considerations, limited research has been conducted on the impact of teaching DfAM on the student’s design process. This study investigates this interaction by comparing two DfAM educational interventions conducted at different points in the academic semester. The two versions are compared by evaluating the students’ perceived utility, change in self-efficacy, and the use of DfAM concepts in design. The results show that introducing DfAM early in the semester when students have little previous experience in AM resulted in the largest gains in students perceiving utility in learning about DfAM concepts and DfAM self-efficacy gains. Further, we see that this increase relates to greater application of opportunistic DfAM concepts in student design ideas in a DfAM challenge. However, no difference was seen in the application of restrictive DfAM concepts between the two interventions. These results can be used to guide the design and implementation of DfAM education.


Sign in / Sign up

Export Citation Format

Share Document