Selective Laser Foaming for Three-Dimensional Cell Culture on a Compact Disc

Author(s):  
JinGyu Ock ◽  
Wei Li

A selective laser foaming process is developed to fabricate three-dimensional (3D) scaffold on a commercially available compact disc (CD) made of polycarbonate (PC). The laser-foamed 3D structure could be utilized to form high throughput perfusion-based tissue model device. In this study, effects of significant parameters and the morphology of porous structure were analyzed. As a result, laser foaming of gas saturated polycarbonate creates inverse cone-shaped wells with 3D porous structure on the surface region and the pores are tens of micrometers in diameter. The size of the well is dependent on the laser power and laser exposure time. The pore size relies on the gas concentration in the PC CD samples. The fabricated micro-scale porous scaffolds will be used to create centrifugal force driven two-chamber tissue model system arrays for high throughput drug testing.

Lab on a Chip ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 2228-2236 ◽  
Author(s):  
Xuejia Hu ◽  
Shukun Zhao ◽  
Ziyi Luo ◽  
Yunfeng Zuo ◽  
Fang Wang ◽  
...  

Multicellular aggregates in three-dimensional (3D) environments provide novel solid tumor models that can provide insight into in vivo drug resistance.


2021 ◽  
Vol 12 (1) ◽  
pp. 16
Author(s):  
Ewa Dzierzkowska ◽  
Anna Scisłowska-Czarnecka ◽  
Marcin Kudzin ◽  
Maciej Boguń ◽  
Piotr Szatkowski ◽  
...  

Skin regeneration requires a three-dimensional (3D) scaffold for cell adhesion, growth and proliferation. A type of the scaffold offering a 3D structure is a nonwoven material produced via a melt-blown technique. Process parameters of this technique can be adapted to improve the cellular response. Polylactic acid (PLA) was used to produce a nonwoven scaffold by a melt-blown technique. The key process parameters, i.e., the head and air temperature, were changed in the range from 180–270 °C to obtain eight different materials (MB1–MB8). The relationships between the process parameters, morphology, porosity, thermal properties and the cellular response were explored in this study. The mean fiber diameters ranged from 3 to 120 µm. The average material roughness values were between 47 and 160 µm, whereas the pore diameters ranged from 5 to 400 µm. The calorimetry thermograms revealed a correlation between the temperature parameters and crystallization. The response of keratinocytes and macrophages exhibited a higher cell viability on thicker fibers. The cell-scaffold interaction was observed via SEM after 7 days. This result proved that the features of melt-blown nonwoven scaffolds depended on the processing parameters, such as head temperature and air temperature. Thanks to examinations, the most suitable scaffolds for skin tissue regeneration were selected.


2017 ◽  
Vol 16 (4) ◽  
pp. 47-52 ◽  
Author(s):  
D Elamparithi ◽  
V Moorthy

Three-dimensional scaffolds can be fabricated by various methods. These scaffold constructs showed a major impact on various biomedical applications. The bioactive porous scaffolds should have an excellent three-dimensional architecture and interconnected porous structure for cells adhesion and migration to enhance the therapeutic potential. The porosity and interconnected porous structure can be optimized using various scaffold preparation methods. In this mini review, we discussed the advantages and disadvantages of various commonly used scaffold preparation techniques.


Author(s):  
Liang Ma ◽  
Lei Gao ◽  
Yichen Luo ◽  
Huayong Yang ◽  
Bin Zhang ◽  
...  

A porous polymer-based three-dimensional (3D) cell culture device has been developed as an in vitro tissue model system for the cytotoxicity of anticancer drug test. The device had two chambers connected in tandem, each loaded with a 3D scaffold made of highly biocompatible poly (lactic acid) (PLA). Hepatoma cells (HepG2) and glioblastoma multiforme (GBM) cancer cells were cultured in the two separate porous scaffolds. A peristaltic pump was adopted to realize a perfusion cell culture. In this study, we focus on cell viability inside the 3D porous scaffolds under flow-induced shear stress effects. A flow simulation was conducted to predict the shear stress based on a realistic representation of the porous structure. The simulation results were correlated to the cell variability measurements at different flow rates. It is shown that the modeling approach presented in this paper can be useful for shear stress predication inside porous scaffolds and the computational fluid dynamics model can be an effective way to optimize the operation parameters of perfused 3D cell culture devices.


Research ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Changmin Shao ◽  
Yuxiao Liu ◽  
Junjie Chi ◽  
Jie Wang ◽  
Ze Zhao ◽  
...  

Three-dimensional (3D) porous scaffolds have a demonstrated value for tissue engineering and regenerative medicine. Inspired by the predation processes of marine predators in nature, we present new photocontrolled shrinkable inverse opal graphene oxide (GO) hydrogel scaffolds for cell enrichment and 3D culture. The scaffolds with adjustable pore sizes and morphologies were created using a GO and N-isopropylacrylamide dispersed solution as a continuous phase of microfluidic emulsions for polymerizing and replicating. Because of the interconnected porous structures and the remotely controllable volume responsiveness of the scaffolds, the suspended cells could be enriched into the inner spaces of the scaffolds through predator-like swallowing and discharging processes. Hepatocyte cells concentrated in the scaffold pores could form denser 3D spheroids more quickly via the controlled compression force caused by the shrinking of the dynamic scaffolds. More importantly, with a program of scaffold enrichment with different cells, an unprecedented 3D multilayer coculture system of endothelial-cell-encapsulated hepatocytes and fibroblasts could be generated for applications such as liver-on-a-chip and bioartificial liver. It was demonstrated that the resultant multicellular system offered significant improvements in hepatic functions, such as albumin secretion, urea synthesis, and cytochrome P450 expression. These features of our scaffolds make them highly promising for the biomimetic construction of various physiological and pathophysiological 3D tissue models, which could be used for understanding tissue level biology and in vitro drug testing applications.


2019 ◽  
Vol 24 (4) ◽  
pp. 420-428
Author(s):  
Pierre Baillargeon ◽  
Justin Shumate ◽  
Shurong Hou ◽  
Virneliz Fernandez-Vega ◽  
Nicholas Marques ◽  
...  

Affordable and physiologically relevant three-dimensional (3D) cell-based assays used in high-throughput screening (HTS) are on the rise in early drug discovery. These technologies have been aided by the recent adaptation of novel microplate treatments and spheroid culturing techniques. One such technology involves the use of nanoparticle (NanoShuttle-PL) labeled cells and custom magnetic drives to assist in cell aggregation to ensure rapid 3D structure formation after the cells have been dispensed into microtiter plates. Transitioning this technology from a low-throughput manual benchtop application, as previously published by our lab, into a robotically enabled format achieves orders of magnitude greater throughput but required the development of specialized support hardware. This effort included in-house development, fabrication, and testing of ancillary devices that assist robotic handing and high-precision placement of microtiter plates into an incubator embedded with magnetic drives. Utilizing a “rapid prototyping” approach facilitated by cloud-based computer-aided design software, we built the necessary components using hobby-grade 3D printers with turnaround times that rival those of traditional manufacturing/development practices at a substantially reduced cost. This approach culminated in a first-in-class HTS-compatible 3D system in which we have coupled 3D bioprinting to a fully automated HTS robotic platform utilizing our novel magnetic incubator shelf assemblies.


Lab on a Chip ◽  
2015 ◽  
Vol 15 (12) ◽  
pp. 2634-2646 ◽  
Author(s):  
Xiaojun Yan ◽  
Jingyu Wang ◽  
Lu Zhu ◽  
Jonathan Joseph Lowrey ◽  
Yuanyuan Zhang ◽  
...  

A ready-to-use 3D scaffold-based immunoChip combined with a 3D cell culture chip for high throughput drug hepatotoxicity evaluation.


2004 ◽  
Vol 845 ◽  
Author(s):  
Alvaro Mata ◽  
Aaron J. Fleischman ◽  
Shuvo Roy

ABSTRACTMicrofabrication and soft lithographic techniques are combined to develop three-dimensional (3D) polydimethylsiloxane (PDMS) scaffolds comprising multiple levels of meandering pore geometry textured with 10 μm posts. Both micro-architecture and surface micro-textures have been shown to selectively stimulate cell and tissue behavior. To achieve a 3D scaffold with precise micro-architecture and surface micro-textures, 100 μm thick PDMS films were manufactured using a stacking technique to realize a 66% porous 3D structure with 200 × 400 μm horizontal through holes, 300 μm diameter vertical through holes and 71% surface coverage with 10 μm diameter and 10 μm high posts. Each PDMS porous film level was manufactured by the dual-sided molding of uncured PDMS between a three level SU-8 photoresist mold (of 200, 10, and 100 μm thick features) and a PDMS mold with 10 μm deep micro-textures. Dual-sided molding was achieved using a custom motion control mechanical jig that allowed relative mold alignment to within ∼ ±10 μm.


Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1390 ◽  
Author(s):  
Ranjith Kankala ◽  
Feng-Jun Lu ◽  
Chen-Guang Liu ◽  
Shan-Shan Zhang ◽  
Ai-Zheng Chen ◽  
...  

In recent times, cartilage defects have been the most common athletic injuries, often leading to dreadful consequences such as osteoarthritis, pain, joint deformities, and other symptoms. It is also evident that damage to articular cartilage is often difficult to recover or self-heal because of poor vascular, nervous, and lymphatic supplies. Moreover, cartilage cells have poor regeneration ability and high maturity. Inspired by these facts and the rapid advances in the field of tissue engineering (TE), we fabricated highly porous three-dimensional (3D) scaffold architectures based on cell-responsive polymeric inks, i.e., sodium alginate and gelatin (SA-Gel, 1:3 ratio), by a novel 3D printing method. Moreover, the effect of various processing parameters was systematically investigated. The printed scaffolds of polymer composites gels with excellent transparency, moderate viscosity, and excellent fluid properties showed good surface morphology, better thermal stability and swelling effect, and unique interconnected porous architectures at the optimized operating parameters. In vitro cell proliferation experiments of these cytocompatible scaffolds showed the excellent adhesion rate and growth behavior of chondrocytes. In addition, the porous architectures facilitated the efficient distribution of cells with only a few remaining on the surface, which was confirmed by confocal laser scanning microscopic (CLSM) observations. Icariin (ICA) addition at a concentration of 10 μg/mL further significantly enhanced the proliferation of chondrocytes. We envision that these cell-responsive polymeric inks in the presence of growth regulators like ICA may have potential in engineering complex tissue constructs toward diverse applications in TE.


Sign in / Sign up

Export Citation Format

Share Document