Novel Microfabrication Techniques for Highly Specific Programmed Assembly of Nanostructures

Author(s):  
Balaji Kannan ◽  
Arun Majumdar

Chemically synthesized nanostructures such as nanowires1, carbon nanotubes2 and quantum dots3 possess extraordinary physical, electronic and optical properties that are not found in bulk matter. These characteristics make them attractive candidates for building subsequent generations of novel and superior devices that will find application in areas such as electronics, photonics, energy and biotechnology. In order to realize the full potential of these nanoscale materials, manufacturing techniques that combine the advantages of top-down lithography with bottom-up programmed assembly need to be developed, so that nanostructures can be organized into higher-level devices and systems in a rational manner. However, it is essential that nanostructure assembly occur only at specified locations of the substrate and nowhere else, since otherwise undesirable structures and devices will result. Towards this end, we have developed a hybrid micro/nanoscale-manufacturing paradigm that can be used to program the assembly of nanostructured building blocks at specific, pre-defined locations of a chip in a highly parallel fashion. As a prototype system we have used synthetic DNA molecules and gold nanoparticles modified with complementary DNA strands as the building blocks to demonstrate the highly selective and specific assembly of these nanomaterials on lithographically patterned substrates.

Author(s):  
Joshua D. Carter ◽  
Chenxiang Lin ◽  
Yan Liu ◽  
Hao Yan ◽  
Thomas H. LaBean

This article examines the DNA-based self-assembly of nanostructures. It first reviews the development of DNA self-assembly and DNA-directed assembly, focusing on the main strategies and building blocks available in the modern molecular construction toolbox, including the design, construction, and analysis of nanostructures composed entirely of synthetic DNA, as well as origami nanostructures formed from a mixture of synthetic and biological DNA. In particular, it considers the stepwise covalent synthesis of DNA nanomaterials, unmediated assembly of DNA nanomaterials, hierarchical assembly, nucleated assembly, and algorithmic assembly. It then discusses DNA-directed assembly of heteromaterials such as proteins and peptides, gold nanoparticles, and multicomponent nanostructures. It also describes the use of complementary DNA cohesion as 'smart glue' for bringing together covalently linked functional groups, biomolecules, and nanomaterials. Finally, it evaluates the potential future of DNA-based self-assembly for nanoscale manufacturing for applications in medicine, electronics, photonics, and materials science.


2016 ◽  
Vol 2016 (CICMT) ◽  
pp. 000032-000038
Author(s):  
Atanu Dutta ◽  
Simon S. Ang

Abstract Efficient, compact, and reliable power electronic modules are building blocks of modern day power electronic systems. In recent times, wide bandgap semiconductor devices, such as, silicon carbide (SiC) and gallium nitride (GaN), are widely investigated and used in the power electronic modules to realize power dense, highly efficient, and fast switching modules for various applications. For high power applications is it required to parallel and series several devices to achieve high current and high voltage specifications, which results in larger current conducting traces. One of the major obstacles in using these wideband gap power semiconductor devices are the internal module stray inductance that is associated with these current conducting traces. With increasing demand for higher switching frequency, the internal module parasitic inductance must be reduced to as minimum as possible in order to utilize the full potential of the wide bandgap devices. A multi-layer approach of low-temperature co-fired ceramic (LTCC) to package the wide bandgap devices is investigated. The multi-layer design freedom by using LTCC can be utilized to reduce the footprint of the overall power module, electrical interconnects, hence, reducing the package parasitic inductance. LTCC also facilitates high temperature operations and has a coefficient of thermal expansion matching with wide bandgap devices. In this paper, we report on a LTCC based power module design where LTCC is utilized as an isolation layer between the source and the drain of the power devices. A simulation based parasitic inductance analysis and electro-thermal-mechanical study is performed using ANSYS Workbench Tools to investigate the feasibility of this LTCC based design.


2016 ◽  
Vol 191 ◽  
pp. 89-104 ◽  
Author(s):  
Alina Kirillova ◽  
Georgi Stoychev ◽  
Alla Synytska

The exploitation of colloidal building blocks with morphological and functional anisotropy facilitates the generation of complex structures with unique properties, which are not exhibited by isotropic particle assemblies. Herein, we demonstrate an easy and scalable bottom-up approach for the programmed assembly of hairy oppositely charged homogeneously decorated and Janus particles based on electrostatic interactions mediated by polyelectrolytes grafted onto their surface. Two different assembly routes are proposed depending on the target structures: raspberry-like/half-raspberry-like or dumbbell-like micro-clusters. Ultimately, stable symmetric and asymmetric micro-structures could be obtained in a well-controlled manner for the homogeneous–homogeneous and homogeneous–Janus particle assemblies, respectively. The spatially separated functionalities of the asymmetric Janus particle-based micro-clusters allow their further assembly into complex hierarchical constructs, which may potentially lead to the design of materials with tailored plasmonics and optical properties.


2020 ◽  
Vol 10 (23) ◽  
pp. 8348
Author(s):  
Bram Ton ◽  
Rob Basten ◽  
John Bolte ◽  
Jan Braaksma ◽  
Alessandro Di Bucchianico ◽  
...  

The full potential of predictive maintenance has not yet been utilised. Current solutions focus on individual steps of the predictive maintenance cycle and only work for very specific settings. The overarching challenge of predictive maintenance is to leverage these individual building blocks to obtain a framework that supports optimal maintenance and asset management. The PrimaVera project has identified four obstacles to tackle in order to utilise predictive maintenance at its full potential: lack of orchestration and automation of the predictive maintenance workflow, inaccurate or incomplete data and the role of human and organisational factors in data-driven decision support tools. Furthermore, an intuitive generic applicable predictive maintenance process model is presented in this paper to provide a structured way of deploying predictive maintenance solutions.


2015 ◽  
Vol 51 (61) ◽  
pp. 12297-12300 ◽  
Author(s):  
Thomas Nijs ◽  
Frederik J. Malzner ◽  
Shadi Fatayer ◽  
Aneliia Wäckerlin ◽  
Sylwia Nowakowska ◽  
...  

4,2′:6′,4′′-Terpyridine building blocks self-assemble into hydrogen-bonded domains; addition of copper atoms results in an on-surface transformation into a coordination network.


2011 ◽  
Vol 11 (6) ◽  
pp. 682-691 ◽  
Author(s):  
C. Summerill ◽  
S. J. T. Pollard ◽  
J. A. Smith ◽  
B. Breach ◽  
T. Williams

Appropriate implementation of water safety plans (WSPs) offers an important opportunity to engage in and promote preventative risk management within water utilities. To ensure success, the whole organization, especially executive management, need to be advocates. Illustrated by four case studies, we discuss the influence of organisational culture on buy-in and commitment to WSPs. Despite an internal desire to undertake risk management, aspects of organisational culture prevented these from reaching full potential. Enabling cultural features included: enthusiastic management; past incidents; accountability; insufficient regulations; image; learning and continual improvement cultures; stakeholder relationships; and empowerment of staff. Blocking features included: lack of awareness and recognition; complacency; poor internal relationships; competing priorities; lack of resources and skills; contrasting internal cultures and a lack of near miss reporting. Benefits of WSP implementation and how management are committed are also discussed. We offer some suggestions to those wishing to generate executive buy-in such as: understanding reasons for hesitance; demonstrate benefits; avoiding complacency; highlight building blocks of WSPs and recognising the value of using the WSP approach to inform sound investment planning. We urge water utilities to consider the influence of organisational culture on the success and sustainability of WSP adoption, and to better understand how effective leadership can mould culture to support implementation.


2014 ◽  
Vol 10 ◽  
pp. 1589-1595 ◽  
Author(s):  
Christian B Winiger ◽  
Simon M Langenegger ◽  
Oleg Khorev ◽  
Robert Häner

Aromatic π–π stacking interactions are ubiquitous in nature, medicinal chemistry and materials sciences. They play a crucial role in the stacking of nucleobases, thus stabilising the DNA double helix. The following paper describes a series of chimeric DNA–polycyclic aromatic hydrocarbon (PAH) hybrids. The PAH building blocks are electron-rich pyrene and electron-poor perylenediimide (PDI), and were incorporated into complementary DNA strands. The hybrids contain different numbers of pyrene–PDI interactions that were found to directly influence duplex stability. As the pyrene–PDI ratio approaches 1:1, the stability of the duplexes increases with an average value of 7.5 °C per pyrene–PDI supramolecular interaction indicating the importance of electrostatic complementarity for aromatic π–π stacking interactions.


2019 ◽  
Author(s):  
Lee Organick ◽  
Yuan-Jyue Chen ◽  
Siena Dumas Ang ◽  
Randolph Lopez ◽  
Karin Strauss ◽  
...  

ABSTRACTSynthetic DNA has been gaining momentum as a potential storage medium for archival data storage1–9. Digital information is translated into sequences of nucleotides and the resulting synthetic DNA strands are then stored for later individual file retrieval via PCR7–9(Fig. 1a). Using a previously presented encoding scheme9and new experiments, we demonstrate reliable file recovery when as few as 10 copies per sequence are stored, on average. This results in density of about 17 exabytes/g, nearly two orders of magnitude greater than prior work has shown6. Further, no prior work has experimentally demonstrated access to specific files in a pool more complex than approximately 106unique DNA sequences9, leaving the issue of accurate file retrieval at high data density and complexity unexamined. Here, we demonstrate successful PCR random access using three files of varying sizes in a complex pool of over 1010unique sequences, with no evidence that we have begun to approach complexity limits. We further investigate the role of file size on successful data recovery, the effect of increasing sequencing coverage to aid file recovery, and whether DNA strands drop out of solution in a systematic manner. These findings substantiate the robustness of PCR as a random access mechanism in complex settings, and that the number of copies needed for data retrieval does not compromise density significantly.


Author(s):  
Hugh A. Bruck ◽  
Alan L. Gershon ◽  
Satyandra K. Gupta

Bio-inspired products and devices take their inspiration from nature [Gold00]. Current mechanical engineering curricula do not cover manufacturing techniques and principles needed to develop such products and devices. We have been enhancing the mechanical engineering undergraduate curriculum by integrating recent advances in the manufacturing of bio-inspired products and devices through the following activities: 1. Insert a new sequence of instructional materials on bio-inspired concepts into the mechanical engineering curriculum. 2. Disseminate the materials developed for the new modules and course notes through a dedicated web site. As a result of the curriculum enhancement, a new generation of mechanical engineers will acquire the knowledge necessary to develop products and conduct research for a wide variety of applications utilizing bio-inspired concepts. The project (1) integrates emerging manufacturing technologies based on biological principles into the Mechanical Engineering curriculum, (2) utilizes multi-media technology for disseminating course content, and (3) trains graduate students and faculty participating in its implementation in an emerging technology and thereby contribute to faculty development. Specifically, curriculum is being developed that discusses the following manufacturing technologies and principles: 1. Concurrent Fabrication and Assembly: Manufacturing techniques and principles, such as solid freeform fabrication, compliant mechanisms, and multi-stage molding, that can eliminate the manufacturing and assembly of individual components as is the case for almost all natural systems. 2. Self Assembly: Principles for manufacturing a variety of products from a few building blocks using bio-inspired techniques such as templating and supramolecular chemistry. 3. Functionally Graded Materials: Bio-inspired development of new products through the gradual variation of material properties at multiple length scales through manufacturing processes such as sputtering and powder processing. The curriculum development effort makes two significant contributions to mechanical engineering education: (a) integration of a new research on bio-inspired products and devices into the mechanical engineering curriculum through new courses and revision of existing courses, (b) development of new instructional material for mechanical engineering education based on bio-inspired concepts. There are also broader impacts in the following areas: (a) undergraduate students who might not otherwise puruse studies in mechanical engineering will be attracted to the multidisciplinary area of bio-inspired products, (b) dissemination of the curriculum enhancement through conference presentations, a workshop, and dedicated web site, and (c) a biologically-oriented pedagogical approach to mechanical engineering education that ensures broader access to the knowledge needed to enhance the interest and skills of future engineers and researchers educated through this research program.


Sign in / Sign up

Export Citation Format

Share Document