Investigation on Creep Mechanisms of Alloy 709

Author(s):  
Abdullah S. Alomari ◽  
Nilesh Kumar ◽  
Korukonda L. Murty

To improve efficiency, safety, and reliability of nuclear reactors, structural materials for Gen-IV reactors are being designed and developed. Alloy 709, a 20Cr-25Ni austenitic stainless steel, has superior mechanical properties to be a preferred candidate material for Sodium Fast Reactor structural application. Creep tensile tests were performed at temperatures of 700 °C, 725 °C and 750 °C and range of stresses from 100 MPa to 250 MPa. The apparent stress exponent and activation energy were found to be 10.3±0.4 and 368.6±14.7 kJ/mol. Linear extrapolation method was used to rationalize the higher stress exponent and activation energy relative to the mechanism in power law creep yielding to a true stress exponent of 7.1 ± 0.3 and a true activation energy of 277 ± 12.8 kJ/mol which is close to the lattice diffusion of iron in Fe-20Cr-25Ni. Hence, the lattice diffusion controlled dislocation climb process is believed to be the rate controlling creep deformation mechanism in this range of stresses and temperatures. The appropriate constitutive equation was developed based on the results; however, microstructural evaluations are under investigation to confirm the rate controlling mechanism. In addition, creep tests at higher temperatures and lower stresses are being conducted to extend the stress and strain-rate ranges to observe possible transition in creep mechanism.

1999 ◽  
Vol 14 (12) ◽  
pp. 4541-4550 ◽  
Author(s):  
Z. Y. Ma ◽  
S. C. Tjong ◽  
S. X. Li

Static and cyclic creep tests of Al–15 vol% TiB2in situ composite were carried out at 573–623 K. The values of apparent stress exponent and activation energy for cyclic creep of the composite were much higher than that for static creep. Furthermore, the cyclic creep rate tended to decrease with increasing percentage of unloading amount but was independent of the loading frequencies under the frequency ranges investigated. Finally, the true stress exponent of the composite was equal to 8, and the true activation energy was close to the value for the lattice self-diffusion of aluminum by incorporating a threshold stress for the analysis.


1994 ◽  
Vol 364 ◽  
Author(s):  
Ralph P. Mason ◽  
Nicholas J. Grant

AbstractAn oxide-dispersion strengthened (ODS) Ni3Al-based alloy has been fabricated and creep tested. Previously reported data for minimum creep rate as a function of stress indicated that two creep mechanisms operate at intermediate temperatures of 732 and 816°C [1]. This paper reports the results of recent interrupted creep tests and fractographic studies which serve to identify the two creep mechanisms. Creep at low stresses or low creep-rates occurs by constrained growth of cavities on transverse grain boundaries. In this low stress region an apparent stress exponent of 5.1 is observed. Creep at high stresses or high creep-rates results from the bulk deformation of grains by power law creep with a much smaller contribution due to grain boundary cavitation. The stress exponents of 13 and 22 observed in this high stress region are typical of ODS alloys. In both regions fracture is observed to be mixed mode with a large transgranular component due to the high grain aspect ratio developed in this material. Limited data at 982°C indicate the occurrence of only one mechanism which can be described by a stress exponent of 9.1. It was not possible, based on fractographic studies, to associate the creep mechanism at 982°C with either of those observed at the intermediate temperatures. No fractographic studies were performed at 649°C due to lack of valid specimens; however, the stress exponent of 13.5 observed at 649°C suggests that creep occurs by deformation of the grains.


Author(s):  
V. Thenambika ◽  
S. Jayalakshmi ◽  
R.A. Singh ◽  
J.K. Nidhi ◽  
M. Gupta

Mg-Sn alloys contain thermally stable Mg2Sn phase, and are proposed as heat-resistant alloys for automobile engine applications. In this study, the creep behaviour of Mg-5Sn alloy was investigated using impression creep technique. The impression creep tests were carried out under constant punching stress in the range of 80-320 MPa at temperatures 373-573 K, for dwell times up to 5 hours. The results highlight that creep of Mg-5Sn alloy was load and temperature dependent, i.e. increasing the load and temperature resulted in larger creep deformation and hence to higher creep rates. From the creep curves, the stress exponent and the activation energy were estimated and the creep mechanism was identified.


2010 ◽  
Vol 650 ◽  
pp. 199-204
Author(s):  
Hui Ran Cui ◽  
Feng Sun ◽  
Lan Ting Zhang ◽  
Ai Dang Shan ◽  
Jian Sheng Wu

12Cr heat resistant steels with different concentration of Co and W, while Mo equivalent (Mo+1/2W) was fixed at 1.6, were prepared by arc-melting and hot rolling. Mechanical properties were evaluated by tensile tests conducted with the strain rate 2×10-5S-1 at 575oC, 600oC and 625oC instead of time-consuming creep tests. The results show that when Co content is fixed, the steel with 1.5 wt% W is found having the best deformation resistance which is strong work hardening and slow strain softening. Apparent activation energy of the steel with 3.1 wt% Co and 1.5 wt% W is in the range of 370~413 kJ/mol, higher than those of the other steels in our study, which are close to the self-diffusion activation energy of iron (239 kJ/mol). Therefore, the steel with 3.1 % Co and 1.5% W is suggested as a potential candidate material for 625oC~650oC class USC steam turbines.


2002 ◽  
Vol 753 ◽  
Author(s):  
A. Bartels ◽  
S. Bystrzanowski ◽  
R. Gerling ◽  
F.-P. Schimansky ◽  
H. Kestler ◽  
...  

ABSTRACTIn this study Ti-46Al-9Nb (at%) sheet material processed by a powder metallurgical route was examined. Subsequent to hot rolling the sheets were subjected to a stress-relief treatment at 1273K for 3 hours. During this heat treatment a fine-grained near gamma microstructure has been formed. 100 hours tensile creep tests under constant load were carried out at 700°C in rolling direction, transverse direction as well as 45° direction. Using the method of load changes a stress exponent of 4.1 was determined. Furthermore, the apparent activation energy was determined in the temperature range of 715 – 775°C. Both stress exponent and activation energy suggest that diffusion assisted dislocation climb is the dominant creep mode. A comparison of these results with those of so-called conventional or so-called “2nd generation” γ-TiAl based alloys, e.g. Ti-46.5Al-4(Cr,Nb,Ta,B) (at%) and Ti-47Al-4(Cr,Mn,Nb,Si,B) (at%), indicates a significantly better creep resistance and a higher activation energy of the high Nb containing alloy. Additionally, internal friction experiments were conducted in order to analyze the deformation behavior under very small strains at elevated temperatures.


2010 ◽  
Vol 638-642 ◽  
pp. 1596-1601 ◽  
Author(s):  
Yang Shan Sun ◽  
Jing Bai ◽  
Feng Xue

The creep behavior of two series of magnesium alloys, Mg-4Al based alloys with strontium addition and binary Mg-Nd alloys, has been studied. Results show that the high creep properties achieved by the Mg-Nd alloys are attributed to the precipitation of tiny dispersed β’ particles, which form and effectively restrict the dislocation slipping and climb during creep deformation. In terms of values of the stress exponent and apparent activation energy gained from systematic creep tests, the mechanism responsible for creep deformation of the Mg-Nd alloys is inferred as dislocation climb, which is supported by TEM observations performed on the Mg-2Nd alloy after creep test. For the Mg-4Al based alloys, however, microstructural observations reveal that the significant improvement on creep properties caused by Sr addition is accounted for the formation of an interphase network consisting of Al4Sr and a Mg-Al-Sr ternary compound distributing at grain boundaries. The breakage of the interphase network after extrusion results in a sharp drop of creep properties, indicating the creep deformation of the alloy is controlled mainly by grain boundary sliding, which is in contradiction to the mechanism for creep of the alloys inferred by the classical criterions based on the values of stress exponent and apparent activation energy.


2010 ◽  
Vol 638-642 ◽  
pp. 3194-3199
Author(s):  
Valeriy Dudko ◽  
Rustam Kaibyshev ◽  
Andrey Belyakov ◽  
Yoshikazu Sakai ◽  
Kaneaki Tsuzaki

The creep behavior of oxide-bearing Fe-0.6%O steel was studied in the temperature range of 550-700°C at stresses ranging from 100 to 400 MPa. The creep data showed high values of an apparent stress exponent n close to 16 for power-law creep. In addition the apparent experimental activation energy was much higher than that for the lattice diffusion in -iron. Analysis of creep data revealed that the deformation behavior was strongly affected by the threshold stresses, which are associated with the interaction between moving dislocations and fine incoherent oxide particles. Analysis of deformation behavior in terms of threshold stress leads the true stress exponent of 8; the activation energy for creep became close to value of activation energy for lattice diffusion at 700°C and for pipe-diffusion in the temperature range of 550–650°C.


2002 ◽  
Vol 17 (9) ◽  
pp. 2307-2313 ◽  
Author(s):  
Z. Z. Ma ◽  
S. S. Tjong ◽  
X. X. Meng

A titanium composite reinforced by in situ dual-scale particle, high-aspect-ratio TiB whiskers and fine TiC particulates was fabricated by a reactive hot pressing technique from a B4C–Ti system. The composite was subjected to creep investigations in compression at 873–923 K. This composite exhibited a stress exponent of 4.5–4.6 and a creep activation energy of 298 kJ/mol. By comparison, unreinforced Ti exhibited a stress exponent of 5.2–5.3 and a creep activation energy of 259 kJ/mol. No change in the stress exponent with varying creep rates was observed in both composite and unreinforced Ti under the investigated creep rates. The creep resistance of the composite was more than one order of magnitude higher than that of the unreinforced Ti. The load transfer mechanism accounted for this result. The creep of both composite and unreinforced Ti was controlled by lattice diffusion in the titanium matrix.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 581
Author(s):  
Abdulhakim A. Almajid

This study is focused on the deformation mechanism and behavior of naturally aged 7010 aluminum alloy at elevated temperatures. The specimens were naturally aged for 60 days to reach a saturated hardness state. High-temperature tensile tests for the naturally aged sample were conducted at different temperatures of 573, 623, 673, and 723 K at various strain rates ranging from 5 × 10−5 to 10−2 s−1. The dependency of stress on the strain rate showed a stress exponent, n, of ~6.5 for the low two temperatures and ~4.5 for the high two temperatures. The apparent activation energies of 290 and 165 kJ/mol are observed at the low, and high-temperature range, respectively. These values of activation energies are greater than those of solute/solvent self-diffusion. The stress exponents, n, and activation energy observed are rather high and this indicates the presence of threshold stress. This behavior occurred as a result of the dislocation interaction with the second phase particles that are existed in the alloy at the testing temperatures. The threshold stress decreases in an exponential manner as temperature increases. The true activation energy was computed by incorporating the threshold stress in the power-law relation between the stress and the strain. The magnitude of the true activation energy, Qt dropped to 234 and 102 kJ/mol at the low and high-temperature range, respectively. These values are close to that of diffusion of Zinc in Aluminum and diffusion of Magnesium in Aluminum, respectively. The Zener–Hollomon parameter for the alloy was developed as a function of effective stress. The data in each region (low and high-temperature region) coalescence in a segment line in each region.


2013 ◽  
Vol 811 ◽  
pp. 9-13 ◽  
Author(s):  
Zakaria Boumerzoug ◽  
Zakaria Boumerzoug ◽  
Vincent Ji

In this present investigation, the mechanical properties of industrial drawn copper wires have been studied by creep tests, tensile tests and hardness Vickers. The effect of prior heat treatments at 500°C for different time on the drawn wires behavior was the main goal of this investigation. We have found that these heat treatments influenced the creep behavior of drawn wires and recorded shape curves. The creep tests were applied under ambient atmosphere at 240 °C. The creep duration before rupture decreased with the prior heat treatment time. The creep tests results were confirmed by tensile tests. A relationship between the hardness and the ultimate tensile strength of this industrial material has been established. Optical and scanning electron microscopy observations have been also used. Cross section observations of the wire after tensile or creep-rupture tests have shown that the mechanism of rupture was mainly controlled by the void formation.


Sign in / Sign up

Export Citation Format

Share Document