Integrity Assessment and On-Site Repair of a Floating Production Platform

Author(s):  
Mauro G. Marinho ◽  
Alexandre M. Pope ◽  
Luiz Claudio Meniconi ◽  
Luiz Henrique M. Alves ◽  
Cesar Del Vecchio

Following the warning of a flooded bow horizontal brace of a semi-submersible production platform, an inspection diving team was mobilized and cracks were found at both bow and aft K-joints. Analysis of the service life of the platform, together with the results of structural analysis and local strain measurements, concluded that cracking was caused by fatigue initiated at high stress concentration points on the gusset plates inserted in the tubular joints. As a consequence of the fractured plates other cracks were nucleated close to the intersection lines of the braces that compose the K-joints. Based on this analysis different repair possibilities were proposed. To comply with the production goals of the Business Unit it was decided to repair the platform on-site and in production in agreement with the Classification Society. The proposed repair contemplated the installation of two flanges on the gusset plates between the diagonal braces by underwater wet (UWW) welding. Cracks at the gusset plates were also removed by grinding and wet welding. Defects located at the braces are being monitored and repaired by the installation of backing bars, by wet welding, followed by grinding and welding from the inside. To carry out the job two weld procedures and ten welder-divers were qualified.

Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4711
Author(s):  
Armanto P. Simanjuntak ◽  
Jae-Young Lee

Printed circuit heat exchangers (PCHEs) are often subject to high pressure and temperature difference between the hot and cold channels which may cause a mechanical integrity problem. A conventional plate heat exchanger where the channel geometries are semi-circular and etched at one side of the stacked plate is a common design in the market. However, the sharp edge tip channel may cause high stress intensity. Double-faced type PCHE appears with the promising ability to reduce the stress intensity and stress concentration factor. Finite element analysis simulation has been conducted to observe the mechanical integrity of double-etched printed circuit heat exchanger design. The application of an additional ellipse upper channel helps the stress intensity decrease in the proposed PCHE channel. Five different cases were simulated in this study. The simulation shows that the stress intensity was reduced up to 24% with the increase in additional elliptical channel radius. Besides that, the horizontal offset channels configuration was also investigated in this study. Simulation results show that the maximum stress intensity of 2.5 mm offset configuration is 9% lower compared to the maximum stress intensity of 0 mm offset. This work proposed an additional elliptical upper channel with a 2.5 mm offset configuration as an optimum design.


2007 ◽  
Vol 102 (10) ◽  
pp. 103506 ◽  
Author(s):  
Eddy Latu-Romain ◽  
Michel Mermoux ◽  
Alexandre Crisci ◽  
Dominique Delille ◽  
Laurens F. Tz. Kwakman

1990 ◽  
Vol 196 ◽  
Author(s):  
Jiang Xinggang ◽  
Cui Jianzhong ◽  
Ma Longxiang

ABSTRACTCavity nucleation during superplastic deformation of a high strength aluminium alloy has been studied using a high voltage electron microscope and an optical microscope. The results show that cavities nucleation is due only to superplastic deformation and not to pre-existing microvoids which may be introduced during thermomechanical processing. The main reason for cavity nucleation is the high stress concentration at discontinuties in the plane of the grain boundary due to grain boundary sliding.


2006 ◽  
Vol 129 (2) ◽  
pp. 293-303 ◽  
Author(s):  
Gerald T. Cashman

Elevated temperature data for powder metallurgy alloy René 95 generated in vacuum are presented to demonstrate that the life differences observed between surface and internally initiated failures are due to an environmental effect. The transition in behavior from a mode at low stress dominated by internal initiations to a surface dominated mode at high stress is quantitatively described in terms of both a weakest-link model and a local strain relationship. A fatigue failure mechanism is provided that explains that the natural selection of initiation site is based upon the concept that the site displaying the highest local cyclic plastic strain is the location where fatigue initiates.


Author(s):  
Tibor Kiss ◽  
Wing-Fai Ng ◽  
Larry D. Mitchell

Abstract A high-speed rotor wheel for a wind-tunnel experiment has been designed. The rotor wheel was similar to one in an axial turbine, except that slender bars replaced the blades. The main parameters of the rotor wheel were an outer diameter of 10“, a maximum rotational speed of 24,000 RPM and a maximum transferred torque of 64 lb-ft. Due to the working environment, the rotor had to be designed with high safety margins. The coupling of the rotor wheel with the shaft was found to be the most critical issue, because of the high stress concentration factors associated with the conventional coupling methods. The efforts to reduce the stress concentrations resulted in an advanced coupling design which is the main subject of the present paper. This new design was a special key coupling in which six dowel pins were used for keys. The key slots, now pin-grooves, were placed in bosses on the inner surface of the hub. The hub of the rotor wheel was relatively long, which allowed for applying the coupling near the end faces of the hub, that is, away from the highly loaded centerplane. The long hub resulted in low radial expansion in the coupling region. Therefore, solid contact between the shaft and the hub could be maintained for all working conditions. To develop and verify the design ideas, stress and deformation analyses were carried out using quasi-two-dimensional finite element models. An overall safety factor of 3.7 resulted. The rotor has been built and successfully accelerated over the design speed in a spin test pit.


Author(s):  
Fa´bio de Castro Marangone ◽  
Ediberto Bastos Tinoco ◽  
Carlos Eduardo Simo˜es Gomes

Coke drums are thin-walled pressure vessels that experience severe thermal cycling condition which consists of heating, filling and rapidly cooling the drum in a short period of time. After some years under operation, cracks at the vessel may occur, especially at high stress concentration areas such as the skirt support to shell attachment. During the filling phase of the cycle, when the empty and cooled coke drum is filled with hot oil, the shell and cone temperatures increase rapidly compared to the skirt temperature and the last is pushed outward, since its bottom is at lower temperature and fixed at a concrete base. During quenching (sudden cooling) phase, the coke drum is filled with water at about 80°C and tends to cool faster than the skirt, which is pulled inward until equilibrium is obtained. The skirt expansion and contraction movement results in bending stresses in axial direction on the top of skirt. As lower the switch temperature is, more severe is the bending effect. One of PETROBRAS delayed coke unit presented some operational problems at pre-heating phase, resulting in lower switch temperatures. This paper presents an analysis showing the influence of the switch temperature on coke drum fatigue life. At first, the transient loading conditions were established from thermocouple measurements at skirt attachment weld (hot box region). Later, a transient thermal analysis was performed with FEA and the temperature gradient at the skirt attachment during entire thermal cycle was obtained. The thermal results were then converted to a structural model which was solved for linear elastic stress including other loads such as pressure. Finally, the maximum stress components for both filling and quenching phases were determined and a complete stress range was calculated as per ASME Section VIII, Div 2. The procedure described above was applied for different switch temperatures scenarios in order to show its influence on the fatigue life of the coke drum.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7344
Author(s):  
Akikazu Shinya ◽  
Yoshiki Ishida ◽  
Daisuke Miura ◽  
Akiyoshi Shinya

A three-dimensional (3D) finite element (FE) model of the mandibular bone was created from 3D X-ray CT scan images of a live human subject. Simulating the clinical situation of implant therapy at the mandibular first molar, virtual extraction of the tooth was performed at the 3D FE mandibular model, and 12 different implant diameters and lengths were virtually inserted in order to carry out a mechanical analysis. (1) High stress concentration was found at the surfaces of the buccal and lingual peri-implant bone adjacent to the sides of the neck in all the implants. (2) The greatest stress value was approximately 6.0 MPa with implant diameter of 3.8 mm, approx. 4.5 MPa with implant diameter of 4.3 mm, and approx. 3.2 MPa with implant diameter of 6.0 mm. (3) The stress on the peri-implant bone was found to decrease with increasing length and mainly in diameter of the implant.


2020 ◽  
Vol 12 (24) ◽  
pp. 10468
Author(s):  
Muhammad Safdar ◽  
Tim Newson ◽  
Colin Schmidt ◽  
Kenichi Sato ◽  
Takuro Fujikawa ◽  
...  

The disposal of 2011 Japan earthquake waste has become an important issue in Japan and it is not realistic or economical to send all of these wastes to landfill sites, due to limited space, high costs, and related environmental issues. In sustainable geotechnical applications, mixing of the separated soils from disaster wastes with additives (e.g., cement and fiber) is required to improve their strength and stiffness characteristics. In this study, monotonic triaxial drained compression tests are performed on medium dense specimens of Toyoura sand-cement-fiber mixtures with different percentages of fiber and cement (e.g., 0–3%) additives. The experimental results indicate that behavior of the mixtures is significantly affected by the concentration of fiber and cement additives. Based on a comprehensive set of test results, modifications to the series of equations were developed that can be used to evaluate the shear modulus and mobilized stress curves at small-strain levels. The experimental results and model comparison show that the elastic threshold strain (γe), reference strain (γr), increases with fiber and cement additives. In addition, the range of curvature parameter, from 0.88 to 1.0, provides a good comparison with the results of small-strain measurements. Overall, the comparison of the results and model shows that the small-strain measurements obtained using local strain transducers fall within the range of model upper and lower bound curves. The results of the unreinforced, fiber, and cemented sand shows a close agreement with the model mean curve, but fiber-reinforced cemented sand shows a good comparison with model upper bound.


Sign in / Sign up

Export Citation Format

Share Document