Response Spectra for Explosion Resistant Design and Assessment

Author(s):  
Steve Walker ◽  
Brian Corr ◽  
Vincent Tam ◽  
Roland Martland ◽  
Rashid Shahsavar

This paper describes a project to examine the explosion test results obtained at Spadeadam in the 1990’s from the point of view of structural response. At an early project phase, when reliable simulations may not be available, nominal explosion overpressures and durations or past experience from similar situations may be used as inputs to the Response Spectrum approach. The results, however, will only be as accurate as the estimated loading. Structural engineers are often presented with complex pressure traces and are expected to design efficient structures to resist these loads without any further guidance. Response surfaces, representing peak deflection against scaled natural period and structural resistances, have been calculated for a large number of experimental and simulated pressure traces. Biggs response curves are a special case corresponding to triangular loading time histories. The Response Spectra are obtained from these response surfaces by taking horizontal sections of these surfaces at allowable ductility values. The required static resistance for a structure with a given natural period and pre-determined allowable ductility may be read from these curves. The design or assessment may then proceed with this required static resistance which may be reinterpreted as an equivalent static load. The project team has had access to FLACS simulated pressure traces corresponding to the Spadeadam tests. This has enabled a comparison to be made between experimental and simulated traces taking into account the target structures’ characteristics. A description of the method has been included in reference [1], in the Commentary of the new API RP on Fire and Blast which will be made available during 2006, and in a forthcoming OTO (HSE) report.

2018 ◽  
Vol 10 (12) ◽  
pp. 4659 ◽  
Author(s):  
Yabin Chen ◽  
Longjun Xu ◽  
Xingji Zhu ◽  
Hao Liu

For seismic resilience-based design (RBD), a selection of recorded time histories for dynamic structural analysis is usually required. In order to make individual structures and communities regain their target functions as promptly as possible, uncertainty of the structural response estimates is in great need of reduction. The ground motion (GM) selection based on a single target response spectrum, such as acceleration or displacement response spectrum, would bias structural response estimates leading significant uncertainty, even though response spectrum variance is taken into account. In addition, resilience of an individual structure is not governed by its own performance, but depends severely on the performance of other systems in the same community. Thus, evaluation of resilience of a community using records matching target spectrum at whole periods would be reasonable because the fundamental periods of systems in the community may be varied. This paper presents a GM selection approach based on a probabilistic framework to find an optimal set of records to match multiple target spectra, including acceleration and displacement response spectra. Two major steps are included in that framework. Generation of multiple sub-spectra from target displacement response spectrum for selecting sets of GMs was proposed as the first step. Likewise, the process as genetic algorithm (GA), evolvement of individuals previously generated, is the second step, rather than using crossover and mutation techniques. A novel technique improving the match between acceleration response spectra of samples and targets is proposed as the second evolvement step. It is proved computationally efficient for the proposed algorithm by comparing with two developed GM selection algorithms. Finally, the proposed algorithm is applied to select GM records according to seismic codes for analysis of four archetype reinforced concrete (RC) frames aiming to evaluate the influence of GM selection considering two design response spectra on structural responses. The implications of design response spectra especially the displacement response spectrum and GM selection algorithm are summarized.


2018 ◽  
Vol 34 (4) ◽  
pp. 1913-1930 ◽  
Author(s):  
Irmela Zentner

The random vibration theory offers a framework for the conversion of response spectra into power spectral densities (PSDs) and vice versa. The PSD is a mathematically more suitable quantity for structural dynamics analysis and can be straightforwardly used to compute structural response in the frequency domain. This allows for the computation of in-structure floor response spectra and peak responses by conducting only one structural analysis. In particular, there is no need to select or generate spectrum-compatible time histories to conduct the analysis. Peak response quantities and confidence intervals can be computed without any further simplifications such as currently used in the response spectrum method, where modal combination rules have to be derived. In contrast to many former studies, the Arias intensity-based definition of strong-motion duration is adopted here. This paper shows that, if the same definitions of strong-motion duration and modeling assumptions are used for time history and RVT computations, then the same result can be expected. This is illustrated by application to a simplified model of a reactor building.


2001 ◽  
Vol 17 (2) ◽  
pp. 221-234 ◽  
Author(s):  
Anil K. Chopra ◽  
Chatpan Chintanapakdee

A new measure of earthquake demand, the drift spectrum has been developed as an adjunct to the response spectrum, a central concept in earthquake engineering, in calculating the internal deformations of a structure due to near-fault ground motions with pronounced coherent pulses in the velocity and displacement histories. Compared in this paper are certain aspects of the elastic structural response to near-fault and far-fault ground motions. It is demonstrated that (1) the difference between drift and response spectra are not unique to near-fault ground motions; these differences simply reflect higher-mode response, which is larger due to near-fault ground motions; (2) response spectrum analysis (RSA) using existing modal combination rules can provide an estimate of structural response that is accurate to a useful degree; (3) these modal combination rules are similarly accurate for near-fault and far-fault ground motions although the underlying assumptions are not satisfied by near-fault excitations; and (4) RSA is preferable over the drift spectrum in computing structural response because it represents standard engineering practice and is applicable to a wide variety of structures.


Author(s):  
Lazhar Hariche ◽  
Baizid Benahmed ◽  
Abbas Moustafa

It is evident that the response of linear structures under dynamic loads depends to two important dynamics parameters of structures, namely, the natural periods and structural damping. These parameters always characterize the oscillation and the energy dissipation of buildings. In fact, the values of these parameters differ significantly, before, during and after an earthquake from values selected during the design phase. This phenomenon, among other, introduces uncertainty into the building simulation process, which remarkably influences the structural response and associated performance of the structure under dynamic loads. This paper develops a new methodology to estimate the maximum absolute response for linear structures with uncertain damping using the Artificial Neural Networks (ANN) and the Monte Carlo method. The proposed method is illustrated using the target design response spectra corresponding to the EC8 for linear structures exposed to seismic loads. The numerical results revealed the practical applicability of the proposed methodology and the crucial influence of accounting the damping uncertainty in structural dynamics. Additionally, the method can be used in practice, mainly for important and special structures where uncertainty could lead to significant changes in structural response.


2020 ◽  
Vol 9 (1) ◽  
pp. 1986-1990

The structural response of any structure is the result of various dynamic phenomenon which lead to vibrations or shaking of the structure , depending on the duration of the ground motion, its frequency and time period. In the present work, dynamic analysis of a typical steel silo is done by using linear Time History Analysis and Response Spectrum method for earthquake Zone V as per Indian code. Two analyses are carried out namely, Time History Analysis (THA) and Response Spectrum Analysis (RSA) using STAAD.ProV8i software. The Load combinations are worked out as per IS-1893-2002. The results in terms of Fundamental natural period, Design Base shear, Lateral Displacements, are compared for the two different silo models considered in the present study.


2011 ◽  
Vol 27 (3) ◽  
pp. 797-815 ◽  
Author(s):  
Nirmal Jayaram ◽  
Ting Lin ◽  
Jack W. Baker

Dynamic structural analysis often requires the selection of input ground motions with a target mean response spectrum. The variance of the target response spectrum is usually ignored or accounted for in an ad hoc manner, which can bias the structural response estimates. This manuscript proposes a computationally efficient and theoretically consistent algorithm to select ground motions that match the target response spectrum mean and variance. The selection algorithm probabilistically generates multiple response spectra from a target distribution, and then selects recorded ground motions whose response spectra individually match the simulated response spectra. A greedy optimization technique further improves the match between the target and the sample means and variances. The proposed algorithm is used to select ground motions for the analysis of sample structures in order to assess the impact of considering ground-motion variance on the structural response estimates. The implications for code-based design and performance-based earthquake engineering are discussed.


2018 ◽  
Vol 149 ◽  
pp. 02078
Author(s):  
Serraye Mahmoud ◽  
Amri Salima

Several evaluation methods of the seismic vulnerability have been developed around the world. Which are very use ful from humanitarian and socioeconomic point of view. Generally these methods use knowledge obtained from previous earthquakes and they are basing on seismic intensity scales and on buildings direct observation. But the macroseismic intensity expresses the consequences of the seism, and not its physical characteristics of the structures. Contrary to this type of methods, an approach based on a nonlinear analysis (Push-Over method) is proposed in this work. It consists in modeling the excitation of the earthquake by a response spectrum and building's behavior by capacity curves. These capacity curves are obtained from numerical modeling performed by Opensees software. The superposition of the two curves, response spectra and capacity curve, makes it possible to determine the performance point and consequently to deduce the state of expected damage. To estimate the probability of damage of a building at a given level of solicitation (defined by Sd), we excites a group of buildings characterized by different parameters related to the geometry of the building and those are related to the materials used (concrete, steel) by seismic solicitation (Response spectrum - RPA 99). The performance point for each building is determined by a procedure defined in FEMA 440. We classifies the buildings according to the position of performance point on their curve which defines a damage state of ds (Mild, Moderate, Important or Ruin) according to the damage levels of Risk-UE. A statistical analysis is then made for each class to build the fragility curves.


2012 ◽  
Vol 569 ◽  
pp. 572-575
Author(s):  
Bang Hyun Cho ◽  
Hoon Hyung Jung ◽  
Jae Duk Hwang ◽  
Chae Sil Kim ◽  
Hun Oh Choi

Thermocouples used for temperature measurement in nuclear power plants should meet the seismic qualification regulations of -IEEE Std 323 and 344 so as to withstand big vibrations such as earthquakes. In this paper, we establish a model for the estimation of the structural integrity of the thermocouples that are used in nuclear reactor building models. We then review the need for seismic measure using modal analysis and the boundary condition. If the natural frequency is less than 33 Hz for the installation environment, response spectrum analysis was carried out taking into consideration the weight of this interpretation and that of the seismic load models in the input response curves (Floor Response Spectra) OBE (Operation Base Earthquake), and SSE (Safe Shutdown Earthquake). Finally, analytical estimation of the structural integrity of a thermocouple is performed by making a comparison of the maximum stress and the allowable stress.


Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 732
Author(s):  
Anna P. Gardymova ◽  
Mikhail N. Krakhalev ◽  
Victor Ya. Zyryanov ◽  
Alexandra A. Gruzdenko ◽  
Andrey A. Alekseev ◽  
...  

The electro-optical properties of polymer dispersed liquid crystal (PDLC) films are highly dependent on the features of the contained liquid crystal (LC) droplets. Cholesteric LC droplets with homeotropic boundaries can form several topologically different orientational structures, including ones with single and more point defects, layer-like, and axisymmetric twisted toroidal structures. These structures are very sensitive to an applied electric field. In this work, we have demonstrated experimentally and by computer simulations that twisted toroidal droplets reveal strong structural response to the electric field. In turn, this leads to vivid changes in the optical texture in crossed polarizers. The response of droplets of different sizes were found to be equivalent in terms of dimensionless parameters. In addition, the explanation of this phenomenon showed a comparison of theoretical and experimental structural response curves aids to determine the shape of the droplet. Finally, we demonstrated that the addition of a dichroic dye allows such films to be used as optical filters with adjustable color even without polarizers.


2013 ◽  
Vol 756-759 ◽  
pp. 4482-4486
Author(s):  
Chun Gan ◽  
Xue Song Luo

In recent years, frequent earthquakes have caused great casualties and economic losses in China. And in the earthquake, damage of buildings and the collapse is the main reason causing casualties. Therefore, in the design of constructional engineering, a seismicity of architectural structure is the pressing task at issue. Through time history analysis method, this paper analyzes the time history of building structural response and then it predicts the peak response of mode by response spectrum analysis. Based on this, this paper constructs a numerical simulation model for the architecture by using finite element analysis software SATWE. At the same time, this paper also calculates the structure seismic so as to determine the design of each function structure in architectural engineering design and then provides reference for the realization of earthquake-resistant building.


Sign in / Sign up

Export Citation Format

Share Document