Assessing the Effects of Impact Forces on Subsea Flowlines and Pipelines

Author(s):  
Chris Alexander

Damage associated with external impact can be a critical component in operating subsea flowlines and pipelines. External damage typically involves impact with anchors, although consideration of dropped objects is also important. Historically, operators assess damage after it occurs in an attempt to determine and establish mechanical integrity. For more than 30 years research has been performed studying the effects of external damage on subsea pipelines. In recent years there has been an interest in proactively addressing the potential for damage and attempting to quantify the severity of damage in terms of impact energies associated with anchors and dropped objects. This paper presents insights garnered in assessing the severity of pipeline damage in the form of dents and gouges. Additionally, research associated with impact forces including experimental work is included as part of the presentation, as well as limit analysis techniques using finite element methods. The primary purpose of this paper is to communicate to offshore pipeline operators a methodology that can be employed to assess the severity of damage and quantify tolerance levels in terms of impact energy.

Author(s):  
Shamsoon Fareed ◽  
Ian May

Accidental loads, for example, due to heavy dropped objects, impact from the trawl gear and anchors of fishing vessels can cause damage to pipelines on the sea bed. The amount of damage will depend on the impact energy. The indentation will be localized at the contact area of the pipe and the impacting object, however, an understanding of the extent of the damage due to an impact is required so that if one should occur in practice an assessment can be made to determine if remedial action needs to be taken to ensure that the pipeline is still serviceable. There are a number of parameters, including the pipe cross section and impact energy, which influence the impact behaviour of a pipe. This paper describes the response, and assesses the damage, of mild steel pipes under high mass low velocity impacts. For this purpose full scale impacts tests were carried out on mild steel pipe having diameter of 457 mm, thickness of 25.4 mm and length of 2000 mm. The pipe was restrained along the base and a 2 tonnes mass with sharp impactor having a vertical downward velocity of 3870 mm/sec was used to impact the pipe transversely with an impact energy of 16 kJ. It was found from the impact tests that a smooth indentation was produced in the pipe. The impact tests were then used for validation of the non-linear dynamic implicit analyses using the finite element analysis software ABAQUS. Deformations at the impact zone, the rebound velocity, etc, recorded in the tests and the results of the finite element analysis were found to be in good agreement. The impact tests and finite element analyses described in this paper will help to improve the understanding of the response of steel pipes under impact loading and can be used as a benchmark for further finite element modelling of impacts on pipes.


1981 ◽  
Vol 18 (01) ◽  
pp. 51-68
Author(s):  
Donald Liu ◽  
Abram Bakker

Local structural problems in ships are generally the result of stress concentrations in structural details. The intent of this paper is to show that costly repairs and lay-up time of a vessel can often be prevented, if these problem areas are recognized and investigated in the design stages. Such investigations can be performed for minimal labor and computer costs by using finite-element analysis techniques. Practical procedures for analyzing structural details are presented, including discussions of the results and the analysis costs expended. It is shown that the application of the finite-element analysis technique can be economically employed in the investigation of structural details.


2014 ◽  
Vol 69 (7) ◽  
Author(s):  
Jaswar Koto ◽  
Abd. Khair Junaidi ◽  
M. H. Hashim

Offshore pipeline is mainly to transport crude oil and gas from offshore to onshore. It is also used to transport crude oil and gas from well to offshore platform and from platform to another platform. The crude oil and gas horizontally flows on the seabed, and then vertically flows inside the riser to the offshore platform. One of current issues of the oil and gas transportation system is an end expansion caused by the axial force. If the end expansion occurs over it limit can cause overstress to riser. This paper explores the effect of axial force toward local buckling in end expansion. In the study, development of programming in visual basic 2010 firstly was constructed using empirical equation. The programming code, then, was validated by comparing simulation result with actual data from company. As case study, the end expansion for various thicknesses of pipes was simulated. In this programming, DNV regulation is included for checking either design complied or not with regulation. However, DNV regulation doesn’t have specific rule regarding the end expansion but it is evaluated under load displacement control under strain condition.


2016 ◽  
Vol 56 (6) ◽  
pp. 455-461
Author(s):  
Raissa Likhonina

This paper deals with a FEA simulation of the vehicle crash with steel safety barriers in ANSYS LS-DYNA® 15.0. Two types of safety barriers are used: JSNH4/H2 and JSAM-2/H2. A geometrical model of the barrier in the Modeler ANSYS® Workbench™ 15.0 was created and after that it was transformed into LS-DYNA® 15.0 to complete the crash test simulation. After computation in solver ANSYS LS-DYNA® 15.0 the results of the simulation such as impact forces, a body displacement and an integral energy were analyzed.


2003 ◽  
Vol 17 (08n09) ◽  
pp. 1355-1361
Author(s):  
Chang Min Suh ◽  
Sung Ho Kim ◽  
Werner Goldsmith

Traumatic Brain Injury (TBI) due to head impact by external impactor was analyzed using Finite Element Method (FEM). Two-dimensiona modeling was performed according to Magnetic Resonance Imaging (MRI) data of Mongolian subject. Pressure variation in a cranium due to external impact was analyzed in order to simulate Nahum et al.'s cadaver test.6 And, analyzed results were compared with Nahum et al.'s experimental data.6 As results, stress and strain behaviors of the brain during impact were accorded with experimental data qualitatively even though there were some differences in quantitative values. In addition, they were accorded with other references about brain injury as well.


Author(s):  
Ankang Cheng ◽  
Nian-Zhong Chen

Structural integrity assessment for subsea pipelines at high pressure high temperature (HPHT) service conditions is one of the most challenging research topics in offshore engineering sector. This paper is to introduce an extended finite element method (XFEM) based numerical approach for structural integrity assessment for subsea pipelines serving HPHT reservoir. A 3D model of a quarter of subsea pipe section with an external semi-elliptical surface crack located at the weld toe is built and the crack propagation under fatigue load is simulated using the XFEM. Results are presented and investigated from both geometric and mechanical aspects. Theoretical basis and limitation for this technique are discussed. Suggestions are given for future application of the XFEM technique based on fracture mechanics when assessing the structural integrity of subsea pipelines at HPHT service conditions.


Sign in / Sign up

Export Citation Format

Share Document