On the Interaction of Waves With an Array of Open Chambered Structures: Application to Wave Energy Converters

Author(s):  
V. Venugopal ◽  
I. G. Bryden ◽  
A. R. Wallace

The results of a study carried out to determine the modification of wave climate around an array of open chambered structures, which could represent an array of wave power devices are presented in this paper. The wave-structure interaction is studied using the Boussinesq wave model within the MIKE 21 suite software. The spacing between two adjacent structures within the array is varied from 1S to 5S, where S is equal to 20 m. The effect of varying the spacing between individual structures and the resulting wave reflection and transmission around the array is illustrated using simulated random waves. The results show that the degree of reflection and transmission mainly depends on the spacing between individual structures and the peak wave periods. The maximum increase in significant wave height due to wave reflection in front of the array reached about 39% and the maximum reduction in significant wave height downstream the array is found to be about 41%. The results presented in this paper should be of interest to the wave energy industry.

Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5098
Author(s):  
Budi Azhari ◽  
Fransisco Danang Wijaya ◽  
Edwar Yazid

For generating electricity, direct-drive wave energy converters (WECs) with linear permanent magnet generators (LPMGs) have advantages in terms of efficiency, simplicity, and force-to-weight ratio over WEC with rotary generators. However, the converter’s work under approaching-real wave conditions should be investigated. This paper studies the performance of a pico-scale WEC with two different LPMGs under unidirectional long-crested random waves. Different significant wave heights (using data in the Southern Ocean of Yogyakarta, Indonesia) and peak frequencies are tested. The JONSWAP energy spectrum is used to extract the wave elevations, while the MSS toolbox in MATLAB Simulink is employed to solve the floater’s dynamic responses. Next, the translator movements are extracted and combined with the flux distribution from FEMM simulation and analytical calculation, and the output powers are obtained. An experiment is conducted to test the output under constant speed. The results show for both designs, different tested significant wave height values produce higher output powers than peak frequency variation, but there is no specific trend on them. Meanwhile, the peak frequency is inversely proportional to the output power. Elimination of the non-facing events results in increasing output power under both parameters’ variation, with higher significant wave height resulting in a bigger increase. The semi iron-cored LPMG produces lower power loss and higher efficiency.


Author(s):  
Felice Arena ◽  
Valentina Laface ◽  
Giovanni Malara ◽  
Alessandra Romolo

The design of an energy harvester involves achieving the two following objectives: to install a safe structure with a reasonable safety margin; and to install an effective device which is able to capture energy in a variety of environmental conditions. In this context, the long-term modelling of the environmental variables plays a crucial role. In the context of wave energy harvesters, the occurrence of sea storms is a critical element in the design process. Indeed, its identification is required for determining extreme loads as well as controlled de-activations of the device for preserving the mechanical components into the device. Considering these issues, the paper proposes an analysis of the wave climate oriented to the determination of the downtime and of the energy losses. Specifically, the paper provides expressions: for calculating the average deactivation time of a wave energy device, given that it must be deactivated if the significant wave height is larger than a certain threshold; and for calculating the energy “lost” (as it is not absorbed by the device) during a storm in which the maximum wave height is larger than the mentioned threshold. The paper shows that closed-form expressions can be obtained by relying on the Equivalent Triangular Storm (ETS) model and that the adequacy of the estimations improves for larger values of the significant wave height threshold.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Marcello Passaro ◽  
Mark A. Hemer ◽  
Graham D. Quartly ◽  
Christian Schwatke ◽  
Denise Dettmering ◽  
...  

AbstractCoastal studies of wave climate and evaluations of wave energy resources are mainly regional and based on the use of computationally very expensive models or a network of in-situ data. Considering the significant wave height, satellite radar altimetry provides an established global and relatively long-term source, whose coastal data are nevertheless typically flagged as unreliable within 30 km of the coast. This study exploits the reprocessing of the radar altimetry signals with a dedicated fitting algorithm to retrieve several years of significant wave height records in the coastal zone. We show significant variations in annual cycle amplitudes and mean state in the last 30 km from the coastline compared to offshore, in areas that were up to now not observable with standard radar altimetry. Consequently, a decrease in the average wave energy flux is observed. Globally, we found that the mean significant wave height at 3 km off the coast is on average 22% smaller than offshore, the amplitude of the annual cycle is reduced on average by 14% and the mean energy flux loses 38% of its offshore value.


2021 ◽  
Vol 9 (3) ◽  
pp. 309
Author(s):  
James Allen ◽  
Gregorio Iglesias ◽  
Deborah Greaves ◽  
Jon Miles

The WaveCat is a moored Wave Energy Converter design which uses wave overtopping discharge into a variable v-shaped hull, to generate electricity through low head turbines. Physical model tests of WaveCat WEC were carried out to determine the device reflection, transmission, absorption and capture coefficients based on selected wave conditions. The model scale was 1:30, with hulls of 3 m in length, 0.4 m in height and a freeboard of 0.2 m. Wave gauges monitored the surface elevation at discrete points around the experimental area, and level sensors and flowmeters recorded the amount of water captured and released by the model. Random waves of significant wave height between 0.03 m and 0.12 m and peak wave periods of 0.91 s to 2.37 s at model scale were tested. The wedge angle of the device was set to 60°. A reflection analysis was carried out using a revised three probe method and spectral analysis of the surface elevation to determine the incident, reflected and transmitted energy. The results show that the reflection coefficient is highest (0.79) at low significant wave height and low peak wave period, the transmission coefficient is highest (0.98) at low significant wave height and high peak wave period, and absorption coefficient is highest (0.78) when significant wave height is high and peak wave period is low. The model also shows the highest Capture Width Ratio (0.015) at wavelengths on the order of model length. The results have particular implications for wave energy conversion prediction potential using this design of device.


Water ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2087
Author(s):  
Jie Dong ◽  
Jian Shi ◽  
Jianchun Zhao ◽  
Chi Zhang ◽  
Haiyan Xu

A wave hindcast, covering the period of 1979–2018, was preformed to assess wave energy potential in the Bohai Sea and the Yellow Sea. The hindcase was carried out using the third generation wave model TOMAWAC with high spatio-temporal resolution (about 1 km and on an hourly basis). Results show that the mean values of significant wave height increase from north to south, and the maximum values are located at the south part of the Yellow Sea with amplitude within 1.6 m. The magnitudes of significant wave height values vary significantly within seasons; they are at a maximum in winter. The wave energy potential was represented by distributions of the wave power flux. The largest values appear in the southeast part of the numerical domain with wave power flux values of 8 kW/m. The wave power flux values are less than 2 kW/m in the Bohai Sea and nearshore areas of the Yellow Sea. The seasonal mean wave power flux was found up to 8 kW/m in the winter and autumn. To investigate the exploitable wave energy, a wave energy event was defined based on the significant wave height (Hs) threshold values of 0.5 m. The wave energy in south part of the Yellow Sea is more steady and intensive than in the other areas. Wave energy in winter is more suitable for harvesting wave energy. Long-term trends of wave power availability suggest that the values of wave power slightly decreased in the 1990s, whereas they have been increasing since 2006.


2020 ◽  
Vol 8 (12) ◽  
pp. 1039
Author(s):  
Ben Timmermans ◽  
Andrew G. P. Shaw ◽  
Christine Gommenginger

Measurements of significant wave height from satellite altimeter missions are finding increasing application in investigations of wave climate, sea state variability and trends, in particular as the means to mitigate the general sparsity of in situ measurements. However, many questions remain over the suitability of altimeter data for the representation of extreme sea states and applications in the coastal zone. In this paper, the limitations of altimeter data to estimate coastal Hs extremes (<10 km from shore) are investigated using the European Space Agency Sea State Climate Change Initiative L2P altimeter data v1.1 product recently released. This Sea State CCI product provides near complete global coverage and a continuous record of 28 years. It is used here together with in situ data from moored wave buoys at six sites around the coast of the United States. The limitations of estimating extreme values based on satellite data are quantified and linked to several factors including the impact of data corruption nearshore, the influence of coastline morphology and local wave climate dynamics, and the spatio-temporal sampling achieved by altimeters. The factors combine to lead to considerable underestimation of estimated Hs 10-yr return levels. Sensitivity to these factors is evaluated at specific sites, leading to recommendations about the use of satellite data to estimate extremes and their temporal evolution in coastal environments.


2015 ◽  
Vol 74 (5) ◽  
Author(s):  
Muhammad Zikra ◽  
Noriaki Hashimoto ◽  
Kodama Mitsuyasu ◽  
Kriyo Sambodho

Over recent years, ocean wave climate change due to global warming has attracted a lot of attention not only coastal and offshore engineer but also stakeholders in the marine industry. There is a wide range of application in ocean environment that require information on ocean wave climate data, such as ships design, design of offshore platforms and coastal structures or naval industry. In this research, monthly variation in significant wave height is studied using MRI-AGCM3.2 wind climate data for 25 year period from 1979-2003. The 25 year significant wave height simulation derived from JMA/MRI-AGCM wind climate data. The JMA/MRI-AGCM climate data were input into WAM model. The results showed that the monthly variability of significant wave height in the Northern Hemisphere is greater than in the Southern Hemisphere. Meanwhile, most of the equatorial regions are in calm condition all year. 


RBRH ◽  
2017 ◽  
Vol 22 (0) ◽  
Author(s):  
Natália Lemke ◽  
◽  
Lauro Julio Calliari ◽  
José Antônio Scotti Fontoura ◽  
Déborah Fonseca Aguiar

ABSTRACT The wave climate characterization in coastal environments is essentially important to oceanography and coastal engineering professionals regarding coastal protection works. Thus, this study aims to determine the most frequent wave parameters (significant wave height, peak period and peak direction) in Patos Lagoon during the period of operation of a directional waverider buoy (from 01/27/2015 to 06/30/2015). The equipment was moored at approximately 14 km from the São Lourenço do Sul coast at the geographic coordinates of 31º29’06” S and 51º55’07” W, with local depth of six meters, registering significant wave height, peak period and peak direction time series. During the analyzed period, the greatest wave frequencies corresponded to short periods (between 2 and 3.5 seconds) and small values of significant wave heights (up to 0.6 meters), with east peak wave directions. The largest wave occurrences corresponded to east peak wave directions (33.3%); peak wave periods between 2.5 and 3 seconds (25.6%) and between 3 and 3.5 seconds (22.1%); and to significant wave heights of up to 0.3 meters (41.2%) and from 0.3 to 0.6 meters (38%). This research yielded unprecedented findings to Patos Lagoon by describing in detail the most occurring wave parameters during the analyzed period, establishing a consistent basis for several other studies that might still be conducted by the scientific community.


2021 ◽  
Vol 11 (2) ◽  
pp. 143
Author(s):  
Ashar Muda Lubis ◽  
Yosi Apriani Putri ◽  
Rio Saputra ◽  
Juhendi Sinaga ◽  
M Hasanudin ◽  
...  

<p class="AbstractText"><span lang="EN-AU">The Serangai area, Batik Nau District, North Bengkulu has the highest average abrasion speed of 20 m/year. The abrasion could cause the coastal area to erode the coastline till several tens of meters. The purpose of this study was to determine the height of the ocean waves and to determine the energy of the ocean waves that has the potential to accelerate the abrasion process in the Serangai area. The research was carried out on November 5-7, 2018 in the Serangai beach area at a depth of 5 m using SBE 26 Plus Seagauge Wave equipment. The results showed that the observed wave height was between 0.8-1.6 m with a significant wave height (Hs) of 1.38 m. In addition, the wave period ranges from 5-11 s with a significant wave period (Ts) of 8.2 s. The result also shows that the maximum wave height of 1.6 m occurred on November 7, 2018 with maximum wave energy of 1800 J/m<sup>2</sup>. This result can perhaps accelerate the abrasion process in the Serangai area. It can also be seen that the wave height in the Serangai region is higher than in several other areas in Indonesia. However, it is necessary to continue observing the wave height to see the seasonal variations in sea wave height in Serangai area.</span></p>


2021 ◽  
Author(s):  
Marta Ramirez ◽  
Melisa Menendez ◽  
Guillaume Dodet

&lt;p&gt;The knowledge of ocean extreme wave climate is of significant importance for a number of coastal and marine activities (e.g. coastal protection, marine spatial planning, offshore engineering). This study uses the recently released Sea State CCI v1 altimeter product to analyze extreme wave climate conditions at global scale. The dataset comprises 28-years inter-calibrated and denoised significant wave height data from 10 altimeter missions.&lt;/p&gt;&lt;p&gt;First, a regional analysis of the available satellite information of extreme waves associated with both, tropical and extratropical cyclones, is carried out. As tropical cyclones, we analyze two intense events which affected the Florida Peninsula and Caribbean Islands: Wilma (in October 2005) and Irma (in August 2017) hurricanes. As extratropical cyclones, we focused on the extreme waves during the 2013-2014 winter season along the Atlantic European coasts. The extreme waves associated with these events are identified in the satellite dataset and are compared with in situ and high-resolution simulated data. The analysis of the satellite data during the storm tracks and its comparison against other data sources indicate that satellite data can provide added value for the analysis of extreme wave conditions that caused important coastal damages.&lt;/p&gt;&lt;p&gt;After assessing the quality of extreme wave data measured by altimeters from this regional analysis, we explore a method to characterize wave height return values (e.g. 50yr return period significant wave height) from the multi-mission satellite data. The method is validated through comparisons with return values estimated from long-term wave buoy records. The extreme analysis is based on monthly maxima of satellite significant wave height computed over marine areas of varying extensions and centered on a target location (e.g. the wave buoy location for comparison and validation of the method).&amp;#160; The extension of the areas is defined from a seasonal study of the spatial correlation and the error metrics of the satellite data against the selected coastal location. We found a threshold of 0.85 correlation as the isoline to select the satellite data subsample (i.er. larger areas to select satellite maxima are found during winter seasons). Finally, a non-stationary extreme model based on GEV distribution is applied to obtain quantiles of low probability. Outcomes from satellite data are validated against extreme estimates from buoy records.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document