A Modelling Framework for Describing the Corrosion Fatigue Behaviour of Carbon Steel Pipelines and Risers

Author(s):  
David Baxter

The fatigue performance of pipeline or riser girth welds is often a critical factor during design. Under corrosive conditions the detrimental influence of an environment on anticipated fatigue lives needs to be taken into account. Fatigue design codes provide advice for the case of loading in seawater at typical wave frequencies, but in other environments, or at other cyclic loading frequencies, the required approach is less certain, and laboratory testing is often needed to provide suitable guidance. In addition to the time and expense of such an exercise, in some cases there are physical limits to the nature of data that such programmes can provide. The provision of data associated with very low cyclic loading frequencies is one such case, as in this instance the time taken for each test becomes unmanageable. This leads to the need for extrapolation of test data into the region of interest, for instance by carrying out tests at either a higher cyclic loading frequency, or a higher stress range, than that anticipated in service. Such extrapolation requires careful consideration in order to avoid potential non-conservatism. It is suggested that the availability of a model which accounted for the influence of these two key parameters (frequency and stress range) would greatly improve confidence when extrapolation is needed, and more broadly would provide a rational basis for designing experimental testing programmes and applying determined data to pipeline design. Such a model should be based on a description of the perceived underlying mechanisms of a material’s interaction with the environment. This paper provides a review of relevant test data and describes the basis for such a model. A generalised framework is developed and fitted to numerous published test data for carbon steels in seawater or sour environment.

CivilEng ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 442-458
Author(s):  
Sandip Chhetri ◽  
Rachel A. Chicchi

Experimental testing of deformed rebar anchors (DRAs) has not been performed extensively, so there is limited test data to understand their failure behavior. This study aims to expand upon these limited tests and understand the behavior of these anchors, when loaded in tension. Analytical benchmark models were created using available test data and a parametric study of deformed rebar anchors was performed. Anchor diameter, spacing, embedment, and number of anchors were varied for a total of 49 concrete breakout simulations. The different failure modes of anchors were predicted analytically, which showed that concrete breakout failure is prominent in the DRA groups. The predicted concrete breakout values were consistent with mean and 5% fractile concrete capacities determined from the ACI concrete capacity design (CCD) method. The 5% fractile factor determined empirically from the simulation results was kc = 26. This value corresponds closely with kc = 24 specified in ACI 318-19 and ACI 349-13 for cast-in place anchors. The analysis results show that the ACI CCD formula can be conservatively used to design DRAs loaded in tension by applying a kc factor no greater than 26.


2017 ◽  
Vol 2017 ◽  
pp. 1-10
Author(s):  
Hai-Ying Liu ◽  
Hang-Tian Duan ◽  
Chun-Qiu Zhang ◽  
Wei Wang

COMSOL finite element software was used to establish a solid-liquid coupling biphasic model of articular cartilage and a microscopic model of chondrocytes, using modeling to take into account the shape and number of chondrocytes in cartilage lacuna in each layer. The effects of cyclic loading at different frequencies on the micromechanical environment of chondrocytes in different regions of the cartilage were studied. The results showed that low frequency loading can cause stress concentration of superficial chondrocytes. Moreover, along with increased frequency, the maximum value of stress response curve of chondrocytes decreased, while the minimum value increased. When the frequency was greater than 0.2 Hz, the extreme value stress of response curve tended to be constant. Cyclic loading had a large influence on the distribution of liquid pressure in chondrocytes in the middle and deep layers. The concentration of fluid pressure changed alternately from intracellular to peripheral in the middle layer. Both the range of liquid pressure in the upper chondrocytes and the maximum value of liquid pressure in the lower chondrocytes in the same lacunae varied greatly in the deep layer. At the same loading frequency, the elastic modulus of artificial cartilage had little effect on the mechanical environment of chondrocytes.


2021 ◽  
Vol 1201 (1) ◽  
pp. 012079
Author(s):  
S B Gjertsen ◽  
A Palencsar ◽  
M Seiersten ◽  
T H Hemmingsen

Abstract Models for predicting top-of-line corrosion (TLC) rates on carbon steels are important tools for cost-effectively designing and operating natural gas transportation pipelines. The work presented in this paper is aimed to investigate how the corrosion rates on carbon steel is affected by acids typically present in the transported pipeline fluids. This investigation may contribute to the development of improved models. In a series of experiments, the corrosion rate differences for pure CO2 (carbonic acid) corrosion and pure organic acid corrosion (acetic acid and formic acid) on X65 carbon steel were investigated at starting pH values; 4.5, 5.3, or 6.3. The experiments were conducted in deaerated low-salinity aqueous solutions at atmospheric pressure and temperature of 65 °C. The corrosion rates were evaluated from linear polarization resistance data as well as mass loss and released iron concentration. A correlation between lower pH values and increased corrosion rates was found for the organic acid experiments. However, the pH was not the most critical factor for the rates of carbon steel corrosion in these experiments. The experimental results showed that the type of acid species involved and the concentration of the undissociated acid in the solution influenced the corrosion rates considerably.


2019 ◽  
Vol 809 ◽  
pp. 23-28
Author(s):  
Florian Herrla ◽  
Helmut Rapp

The fatigue behaviour of [0°/±45°] triaxial braided composites is investigated. Tension-tension and compression-compression loading is chosen to study main damage mechanisms and their effect on the stiffness degradation. In both cyclic loading cases a high stiffness degradation can be observed shortly after the start of cyclic loading. Inter-fibre fractures in the braid yarns with subsequent delaminations are responsible for this behaviour during tension-tension loading. Compression-compression loading leads to kink band formation in the axial yarns favoured by yarn undulations. In consequence of the observed material degradation, S-N curves based on a defined level of stiffness degradation are proposed for fatigue dimensioning instead of load cycles to fracture.


2020 ◽  
Vol 57 (6) ◽  
pp. 903-920 ◽  
Author(s):  
Zongqi Bi ◽  
Quanmei Gong ◽  
Peijun Guo ◽  
Qian Cheng

Arching effect, which is a common phenomenon in any system involving soil–structure interaction, has been found to be inevitably affected by various factors, including loading conditions. This study investigated the evolution of arching effect induced by cyclic loading by conducting a series of tests using a trapdoor apparatus. The test box was instrumented to control the displacement of the moving gate and to record the variation of vertical stress distribution by using a set of dynamic load cells. Digital images were captured during tests and processed using particle image velocimetry (PIV) to determine the displacement field and hence to examine the variation of geometric features of arch and particle movements. The evolution process of arching effect, from the initial formation to the finial collapse, was identified. Depending on the analysis for the geometry appearance, displacement region, and variation of cyclic stresses, both stable and collapsed arches were observed. By increasing the amplitude of cyclic loading step by step, critical loading amplitude corresponding to the threshold of collapse of the arching effect was determined. Based on the results, the effects of trapdoor displacement, cyclic loading frequency, and filling height on arching effect are discussed.


Author(s):  
Jin-Ha Hwang ◽  
Gyo-Geun Youn ◽  
Naoki Miura ◽  
Yun-Jae Kim

To evaluate the structural integrity of nuclear power plant piping, it is important to predict ductile tearing of circumferential cracked pipe from the view point of Leak-Before-Break concept under seismic conditions. CRIEPI (Central Research Institute of Electric Power Industry) conducted fracture test on Japanese carbon steel (STS410) circumferential through-wall cracked pipes under monotonic or cyclic bending load in room temperature. Cyclic loading test conducted variable experimental conditions considering effect of stress ratio and amplitude. In the previous study, monotonic fracture pipe test was simulated by modified stress-strain ductile damage model determined by C(T) specimen fracture toughness test. And, ductile fracture of pipe under cyclic loading simulated using damage criteria based on fracture strain energy from C(T) specimen test data. In this study, monotonic pipe test result is applied to determination of damage model based on fracture strain energy, using finite element analysis, without C(T) specimen fracture toughness test. Ductile fracture of pipe under variable cyclic loading conditions simulates using determined fracture energy damage model from monotonic pipe test.


1978 ◽  
Vol 20 (10) ◽  
pp. 811-815
Author(s):  
M. N. Georgiev ◽  
V. N. Danilov ◽  
N. Ya. Mezhova ◽  
I. V. Nikitin ◽  
P. S. Sokolov

Author(s):  
Knut O. Ronold ◽  
Stig Wa¨stberg

A recommended practice for design of titanium risers is currently being developed as part of Det Norske Veritas’ series of standards and recommended practices for offshore structures. A recommendation is given herein for characteristic S-N curves for use in design of titanium risers against fatigue failure. As a basis for this recommendation, a set of statistical analyses of available fatigue test data have been carried out. Separate analyses have been carried out for base material and welds. The analysis results have been interpreted with respect to mean S-N curves as well as 97.7% lower tolerance bounds with 95% confidence. Characteristic S-N curves for base material and welds, which are not non-conservative with respect to these tolerance bounds, have been proposed. The paper presents the assumptions, the test data, the statistical analyses and their results, and the proposed characteristic S-N curves. The areas of application of the proposed curves are discussed with a particular view to stress range interval, material grade, weld position, temperature, and defect size.


Author(s):  
Seiichiro Tsutsumi

In order to simulate mechanical fatigue phenomena under macroscopically elastic condition, the plastic stretching within a yield surface has to be described, whilst the plastic strain is induced remarkably as the stress approaches the dominant yielding state. In this study, a phenomenological plasticity model, proposed for the description of the cyclic loading behavior observed for typical carbon steels during the high-cycle fatigue subjected to stresses lower than the yield stress, is applied for the prediction of fatigue initiation life. The model is formulated based on the unconventional plasticity model and is applied for materials obeying isotropic and kinematic hardening law. The mechanical responses under cyclic loading conditions are examined briefly. Finally, the initiation life of fatigue cracking is discussed based on the proposed model with the damage counting parameter.


Author(s):  
Samuel Oluyinka Olaniran ◽  
Gaspard Clerc ◽  
Etienne Cabane ◽  
Andreas J. Brunner ◽  
Markus Rüggeberg

Abstract Rubberwood is widely planted for latex production. At the cessation of latex yield it becomes a viable timber source in the wood industry. While good bonding performance of rubberwood has been reported, quantitative information to support this statement is missing. In this study, the tensile shear strength (TSS) and wood failure percentage (WFP) of unmodified and acetylated rubberwood in both wet and dry conditions were examined. Three frequently used adhesives were selected: one-component polyurethane (1C PUR), melamine-urea-formaldehyde (MUF), and phenol-resorcinol-formaldehyde (PRF). Furthermore, fatigue behaviour was analysed for PRF-bonded samples by cyclic loading. Results showed that in dry state, the TSS and WFP of acetylated rubberwood is comparable to the unmodified samples for all adhesives. In wet condition, the performance of bonded rubberwood was improved by acetylation. Cyclic loading revealed comparable fatigue behaviour of bonded unmodified and acetylated rubberwood. This investigation provides first quantitative information on the performance of bonded rubberwood, which can be a valuable input for the production of laminated timber products for structural purposes.


Sign in / Sign up

Export Citation Format

Share Document