Set-Up due to Random Waves: Influence of the Directional Spectrum

Author(s):  
Giuseppe Barbaro ◽  
Giandomenico Foti ◽  
Giovanni Malara

This paper deals with the estimation of set-up due to irregular waves. Following the logic of Barbaro and Martino [1], it is derived the analytical expression of the set-up. The solution is based on the hypotheses of straight, parallel depth contours and constant average flow parameters in the longshore direction. In this context, the corresponding value of the set-up is calculated from a specified off-shore directional spectrum. The effect of the assumed directional spectrum is investigated. In particular, set-up is estimated by considering the following frequency spectra: Pierson-Moskowitz [2], JONSWAP [3] and Ochi-Hubble [4]. Further, influence of the spreading function is investigated by assuming a cosine-power [5] and a hyperbolic spreading function [6]. It is shown that the assumed off-shore spectrum significantly modifies the estimated set-up. It is proposed a practical application. The estimation has been carried out by considering various Italian and American locations. The model is applied from buoy data, that are provided by ISPRA (Istituto Superiore per la Protezione e la Ricerca Ambientale) and by NDBC (National Data Buoy Center).

2013 ◽  
Vol 155 (A3) ◽  

The correct estimation of set-up is very important to evaluate coastal hazard and to design coastal structures. In this paper, we derived a mathematical expression for wave set-up in the context of random waves. The solution to this expression assumes straight, parallel depth contours and constant average flow parameters in the longshore direction. We then investigated the effect of different types of sea state taking account of different frequency spectrum and spreading function assumed in the expression on estimates of wave set-up. We found the set-up was highly influenced by the frequency spectrum used. Finally, we applied this expression to estimate set-up values at locations in Italy and in the United States using buoy data provided by ISPRA (Istituto Superiore per la Protezione e la Ricerca Ambientale) and NDBC (National Data Buoy Centre).


2021 ◽  
Vol 155 (A3) ◽  
Author(s):  
G Barbaro ◽  
G Foti ◽  
G Malara

The correct estimation of set-up is very important to evaluate coastal hazard and to design coastal structures. In this paper, we derived a mathematical expression for wave set-up in the context of random waves. The solution to this expression assumes straight, parallel depth contours and constant average flow parameters in the longshore direction. We then investigated the effect of different types of sea state taking account of different frequency spectrum and spreading function assumed in the expression on estimates of wave set-up. We found the set-up was highly influenced by the frequency spectrum used. Finally, we applied this expression to estimate set-up values at locations in Italy and in the United States using buoy data provided by ISPRA (Istituto Superiore per la Protezione e la Ricerca Ambientale) and NDBC (National Data Buoy Centre).


1978 ◽  
Vol 1 (16) ◽  
pp. 35 ◽  
Author(s):  
Yoshimi Goda ◽  
Tomotsuka Takayama ◽  
Tasumasa Suzuki

Conventional wave diffraction diagrams often yield erroneous estimation of wave heights behind breakwaters in the sea, because they are prepared for monochromatic waves while actual waves in the sea are random with directional spectral characteristics. A proposal is made for the standard form of directional wave spectrum on the basis of Mitsuyasu's formula for directional spreading function. A new set of diffraction diagrams have been constructed for random waves with the proposed directional spectrum. Problems of multi-diffraction and multi-reflection within a harbour can also be solved with serial applications of random wave diffraction.


2021 ◽  
Vol 9 (2) ◽  
pp. 114
Author(s):  
Dag Myrhaug ◽  
Muk Chen Ong

This article derives the time scale of pipeline scour caused by 2D (long-crested) and 3D (short-crested) nonlinear irregular waves and current for wave-dominant flow. The motivation is to provide a simple engineering tool suitable to use when assessing the time scale of equilibrium pipeline scour for these flow conditions. The method assumes the random wave process to be stationary and narrow banded adopting a distribution of the wave crest height representing 2D and 3D nonlinear irregular waves and a time scale formula for regular waves plus current. The presented results cover a range of random waves plus current flow conditions for which the method is valid. Results for typical field conditions are also presented. A possible application of the outcome of this study is that, e.g., consulting engineers can use it as part of assessing the on-bottom stability of seabed pipelines.


Author(s):  
Hong Sik Lee ◽  
A. Neil Williams ◽  
Sung Duk Kim

A numerical model is presented to predict the interaction of multidirectional random surface waves with one or more trapezoidal submarine pits. In the present formulation, each pit may have a different side slope, while the four side slopes at the interior edge of any given pit are assumed equal. The water depth in the fluid region exterior to the pits is taken to be uniform, and the solution method for a random wave system involves the superposition of linear-wave diffraction solutions based on a two-dimensional boundary integral equation approach. The incident wave conditions are specified using a discrete form of the Mitsuyasu directional spectrum. The results of the present numerical model have been compared with those of previous theoretical studies for regular and random wave diffraction by single or multiple rectangular pits. Reasonable agreement was obtained in all cases. Based on these comparisons it is concluded that the present numerical model is an accurate and efficient tool to predict the wave field around multiple submarine pits of trapezoidal section in many practical situations.


2012 ◽  
Vol 58 (No. 5) ◽  
pp. 236-241 ◽  
Author(s):  
S. Mihaljević ◽  
B. Salopek-Sondi

Auxins and their synthetic analogues are commonly used for rooting of cuttings, but their efficiency depends on experimental set-up and, even more importantly, on species or cultivar, and type of explants investigated. In attempt to improve rooting procedure for highbush blueberries (Vaccinium corymbosum L.), we investigated alanine conjugate of indole-3-butyric acid (IBA-Ala) as potential root-promoting compound and compared with commonly used auxins indole-3-butyric acid (IBA) and indole-3-acetic acid (IAA). The effect of different concentrations of auxins on the rooting of highbush blueberry stem cuttings (var. Bluecrop, Bluetta, Burlington and Jersey) and in vitro-derived microcuttings (var. Jersey) was investigated. Auxin treatments significantly promoted rooting of all four varieties in comparison to control. The most efficient rooting promoter in all varieties appeared IBA-Ala (provided up to 83%, and 93% of the rooted cuttings and microcuttings, respectively). Furthermore, IBA-Ala caused a vigorous, well-branched root system that resulted in better acclimatization and survival of plants. Results suggest the application of IBA-Ala may be beneficial for rooting of difficult-to-root varieties of blueberry and related species and their practical application in the nursery industry.  


1978 ◽  
Vol 1 (16) ◽  
pp. 32 ◽  
Author(s):  
J.A. Battjes ◽  
J.P.F.M. Janssen

A description is given of a model developed for the prediction of the dissipation of energy in random waves breaking on a beach. The dissipation rate per breaking wave is estimated from that in a bore of corresponding height, while the probability of occurrence of breaking waves is estimated on the basis of a wave height distribution with an upper cut-off which in shallow water is determined mainly by the local depth. A comparison with measurements of wave height decay and set-up, on a plane beach and on a beach with a bar-trough profile, indicates that the model is capable of predicting qualitatively and quantitatively all the main features of the data.


2011 ◽  
Vol 94-96 ◽  
pp. 2074-2079 ◽  
Author(s):  
Qiu Ying Guo ◽  
Zun Yi Xu ◽  
Ying Jun Sun

Simulating real virtual ocean environment is necessary for the research of interaction simulation of underwater gravity aided inertial navigation system. One of the key techniques of realizing virtual ocean environment is modeling and simulating three-dimensional ocean waves. Numerical simulation of three-dimensional ocean waves in the case of different wind speeds is realized using MATLAB based on directional spectrum composed of Pierson-Moscowitz frequency spectrum and directional spreading function. Experiments show that the simulation speed is fast and the simulation results are vivid if suitable simulation frequency band, interval of wave frequency and interval of direction angle are selected. The simulation can provide some technological supports for interaction simulation of gravity aided navigation system for underwater vehicles.


Author(s):  
João C. C. Henriques ◽  
Juan C. Chong ◽  
António F. O. Falcão ◽  
Rui P. F. Gomes

The paper concerns the phase control by latching of a floating oscillating-water-column (OWC) wave energy converter of spar-buoy type in irregular random waves. The device is equipped with a two-position fast-acting valve in series with the turbine. The instantaneous rotational speed of the turbine is controlled through the power electronics according to a power law relating the electromagnetic torque on the generator rotor to the rotational speed, an algorithm whose adequacy had been numerically tested in earlier papers. Two alternative strategies (1 and 2) for the latching/unlatching timings are investigated. Strategy 1 is based on the knowledge of the zero-crossings of the excitation force on the floater-tube set. This is difficult to implement in practice, since the excitation force can neither be measured directly nor predicted. Strategy 2 uses as input easily measurable physical variables: air pressure in the chamber and turbine rotational speed. Both strategies are investigated by numerical simulation based on a time-domain analysis of a spar-buoy OWC equipped with a self-rectifying radial-flow air turbine of biradial type. Air compressibility in the chamber plays an important role and was modelled as isentropic in a fully non-linear way. Numerical results show that significant gains up to about 28% are achievable through strategy 1, as compared with no phase control. Strategy 2, while being much easier to implement in practice, was found to yield more modest gains (up to about 15%).


Sign in / Sign up

Export Citation Format

Share Document