scholarly journals Hydrodynamic Study of Submerged Ice Collisions

Author(s):  
Subodh Chander ◽  
Ayhan Akinturk ◽  
Bruce Colbourne

Most of the research done on ice-structure interaction deals with the ice at the sea surface. Whereas majority of ice-strengthened regions of ships and offshore structures are well below the waterline. The aim of this research is to examine the mechanics of ice loads caused by submerged ice blocks colliding with the structure. The kinematics is an essential determinant of the energy that is available to drive the ice crushing process during the collision. The present research aims to develop a model to represent the mechanics of such collisions and set a direction for future work. This study includes experimental and numerical components. Various physical experiments have been conducted using a submerged ice model moving solely due to its buoyancy. Using high speed camera the experiments are recorded and analysed to determine the kinematics of collision. These include location, velocity and acceleration of the model ice as a function of time. In parallel, numerical simulations have being conducted using FLOW 3DTM software. The results of the experiments are used to validate the numerical model of the underwater collision. The results shows that added mass plays an important role during the underwater impact collisions. The paper presents some preliminary results obtained during this research.

Author(s):  
Dianshi Feng ◽  
Sze Dai Pang ◽  
Jin Zhang

The increasing marine activities in the Arctic has resulted in a growing demand for reliable structural designs in this region. Ice loads are a major concern to the designer of a marine structure in the arctic, and are often the principal factor that governs the structural design [Palmer and Croasdale, 2013]. With the rapid advancement in computational power, numerical method is becoming a useful tool for design of offshore structures subjected to ice actions. Cohesive element method (CEM), a method which has been widely utilized to simulate fracture in various materials ranging from metals to ceramics and composites as well as bi-material systems, has been recently applied to predict ice-structure interactions. Although it shows promising future for further applications, there are also some challenging issues like high mesh dependency, large variation in cohesive properties etc., yet to be resolved. In this study, a 3D finite element model with the use of CEM was developed in LS-DYNA for simulating ice-structure interaction. The stability of the model was investigated and a parameter sensitivity analysis was carried out for a better understanding of how each material parameter affects the simulation results.


Author(s):  
Yihe Wang ◽  
Leong Hien Poh

Sloping structures are widely used in ice-infested waters because of their ability to reduce the ice loads by changing the ice sheet failure mode from crushing to bending. Model test data showed significant velocity effects on breaking component of sloping structure ice loads (Matskevitch, 2002), which are induced by both the dynamic effect of the ice sheet and the hydrodynamic effect of the sea water beneath the ice sheet. However, existing design codes and most models idealize the underlying sea water as a Winkler-type elastic foundation, without taking into account the velocity effects in the calculation of ice loading. The added mass concept has been utilized by researchers to incorporate the hydrodynamic effect (Sørensen, 1978; Sodhi, 1987), though the potential theory was reported to be more adequate in capturing the (additional) forces from the fluid foundation because the added mass varies with time and space (Zhao and Dempsey, 1996; Lubbad et al, 2008). In general, however, there is limited work done on the incorporation of velocity effects into the computation of ice breaking loads on sloping structures. In this paper, we study the velocity effects on ice breaking load through a two-dimensional problem. The ice-structure interaction problem is studied numerically by incorporating the dynamic effect of the ice sheet and the hydrodynamic effect of the sea water beneath the ice sheet. The ice-fluid interaction is captured by adopting the Euler-Bernoulli beam theory for the ice sheet and the potential theory for the fluid foundation, leading to a set of two governing equations with two loading boundary conditions. For ease of computation, we consider sub-problems with the same set of governing equations, each with modified loading boundary conditions. The numerical models are first validated against available analytical solutions for a simple problem before solving for the sub-problems. Finally, the solution to the original set of governing equations defining the ice-structure interaction is obtained from the superposition of the solutions to two sub-problems. Initial results show that the velocity effects can have a significant influence on ice breaking loads for wide sloping structures.


Author(s):  
Jukka Tuhkuri ◽  
Arttu Polojärvi

Sea ice loads on marine structures are caused by the failure process of ice against the structure. The failure process is affected by both the structure and the ice, thus is called ice–structure interaction. Many ice failure processes, including ice failure against inclined or vertical offshore structures, are composed of large numbers of discrete failure events which lead to the formation of piles of ice blocks. Such failure processes have been successfully studied by using the discrete element method (DEM). In addition, ice appears in nature often as discrete floes; either as single floes, ice floe fields or as parts of ridges. DEM has also been successfully applied to study the formation and deformation of these ice features, and the interactions of ships and structures with them. This paper gives a review of the use of DEM in studying ice–structure interaction, with emphasis on the lessons learned about the behaviour of sea ice as a discontinuous medium. This article is part of the theme issue ‘Modelling of sea-ice phenomena’.


Author(s):  
Per Kristian Bruun ◽  
Ove Tobias Gudmestad

Existing national and international standards for determination of level ice and ice ridge loads on sloping offshore structures recommend different methods for the analysis. The objective of this paper is to review the codes and standards recommendations regarding ice-sloping structures interaction process and highlight the differences between them. Development of offshore hydrocarbon fields in the Eastern Barents Sea is foreseen to take place in the near future while developments already take place in the Pechora Sea and offshore Sakhalin as well as in the Northern Caspian Sea. One of the most difficult issues facing the designer of offshore structures for these areas is how to design for loads from level ice and ice ridges. The ice load considerations will have a major effect on the form and cost of these structures. It is known that different designers use very different ice load estimates (Shkhinek et al., 1994). The standards recommend different methods for determination of the global ice loads on both cone-shaped and sloping rectangular structures. For determination of the global ice loads on these types of structures, it is obvious that the ice-structure interaction process must be identified. Rubble effects must be included in the analysis. The ice-structure interaction process for these geometries depends on many factors, such as; the ice thickness, ice strength, ice-structure friction coefficient, ice velocity, width of the structure and slope angle of the structure. The methods for determination of ice loads recommended by the different standards are very much influenced by local ice conditions and the parameters listed above are given different importance in the different standards. The differences in loads calculated by using the different standards and their validity for the ice-structure interaction process have been investigated and example calculations are presented to show these differences. It is thought that the paper may be of interest for those preparing the new ISO standard (ISO 19906) on Arctic Offshore Structures.


2021 ◽  
Vol 13 (4) ◽  
pp. 744
Author(s):  
J. Xavier Prochaska ◽  
Peter C. Cornillon ◽  
David M. Reiman

We performed an out-of-distribution (OOD) analysis of ∼12,000,000 semi-independent 128 × 128 pixel2 sea surface temperature (SST) regions, which we define as cutouts, from all nighttime granules in the MODIS R2019 Level-2 public dataset to discover the most complex or extreme phenomena at the ocean’s surface. Our algorithm (ULMO) is a probabilistic autoencoder (PAE), which combines two deep learning modules: (1) an autoencoder, trained on ∼150,000 random cutouts from 2010, to represent any input cutout with a 512-dimensional latent vector akin to a (non-linear) Empirical Orthogonal Function (EOF) analysis; and (2) a normalizing flow, which maps the autoencoder’s latent space distribution onto an isotropic Gaussian manifold. From the latter, we calculated a log-likelihood (LL) value for each cutout and defined outlier cutouts to be those in the lowest 0.1% of the distribution. These exhibit large gradients and patterns characteristic of a highly dynamic ocean surface, and many are located within larger complexes whose unique dynamics warrant future analysis. Without guidance, ULMO consistently locates the outliers where the major western boundary currents separate from the continental margin. Prompted by these results, we began the process of exploring the fundamental patterns learned by ULMO thereby identifying several compelling examples. Future work may find that algorithms such as ULMO hold significant potential/promise to learn and derive other, not-yet-identified behaviors in the ocean from the many archives of satellite-derived SST fields. We see no impediment to applying them to other large remote-sensing datasets for ocean science (e.g., SSH and ocean color).


2015 ◽  
Vol 67 (2) ◽  
pp. 172-180 ◽  
Author(s):  
Mumin Sahin ◽  
Cenk Misirli ◽  
Dervis Özkan

Purpose – The purpose of this paper is to examine mechanical and metallurgical properties of AlTiN- and TiN-coates high-speed steel (HSS) materials in detail. Design/methodology/approach – In this study, HSS steel parts have been processed through machining and have been coated with AlTiN and TiN on physical vapour deposition workbench at approximately 6,500°C for 4 hours. Tensile strength, fatigue strength, hardness tests for AlTiN- and TiN-coated HSS samples have been performed; moreover, energy dispersive X-ray spectroscopy and X-ray diffraction analysis and microstructure analysis have been made by scanning electron microscopy. The obtained results have been compared with uncoated HSS components. Findings – It was found that tensile strength of TiAlN- and TiN-coated HSS parts is higher than that of uncoated HSS parts. Highest tensile strength has been obtained from TiN-coated HSS parts. Number of cycles for failure of TiAlN- and TiN-coated HSS parts is higher than that for HSS parts. Particularly TiN-coated HSS parts have the most valuable fatigue results. However, surface roughness of fatigue samples may cause notch effect. For this reason, surface roughness of coated HSS parts is compared with that of uncoated ones. While the average surface roughness (Ra) of the uncoated samples was in the range of 0.40 μm, that of the AlTiN- and TiN-coated samples was in the range of 0.60 and 0.80 μm, respectively. Research limitations/implications – It would be interesting to search different coatings for cutting tools. It could be the good idea for future work to concentrate on wear properties of tool materials. Practical implications – The detailed mechanical and metallurgical results can be used to assess the AlTiN and TiN coating applications in HSS materials. Originality/value – This paper provides information on mechanical and metallurgical behaviour of AlTiN- and TiN-coated HSS materials and offers practical help for researchers and scientists working in the coating area.


2021 ◽  
Author(s):  
Xiangbiao Wang ◽  
Chun Bao Li ◽  
Ling Zhu

Abstract Ship collision accidents occur from time to time in recent years, and this would cause serious consequences such as casualties, environmental pollution, loss of cargo on board, damage to the ship and its equipment, etc. Therefore, it is of great significance to study the response of ship motion and the mechanism of structural damage during the collision. In this paper, model experiments and numerical simulation are used to study the ship-ship collision. Firstly, the Coupled Eulerian-Lagrangian (CEL) was used to simulate the fluid-structure interaction for predicting structural deformation and ship motion during the normal ship-ship collision. Meanwhile, a series of model tests were carried out to validate the numerical results. The validation presented that the CEL simulation was in good agreement with the model test. However, the CEL simulation could not present the characteristics the time-dependent added mass.


2021 ◽  
Author(s):  
Malene Hovgaard Vested ◽  
Erik Damgaard Christensen

Abstract The forces on marine and offshore structures are often affected by spilling breakers. The spilling breaker is characterized by a roller of mixed air and water with a forward speed approximately equal to the wave celerity. This high speed in the top of the wave has the potential to induce high wave loads on upper parts of the structures. This study analyzed the effect of the air content on the forces. The analyses used the Morison equation to examine the effect of the percentage of air on the forces. An experimental set-up was developed to include the injection of air into an otherwise calm water body. The air-injection did introduce a high level a turbulence. It was possible to assess the amount of air content in the water for different amounts of air-injection. In the mixture of air and water the force on an oscillating square cylinder was measured for different levels of air-content, — also in the case without air. The measurements indicated that force coefficients for clear water could be use in the Morison equation as long as the density for water was replaced by the density for the mixture of air and water.


Sign in / Sign up

Export Citation Format

Share Document