Full Scale Reeling Simulation Tests of Girth Welded X60 HFW Linepipe

Author(s):  
Teruki Sadasue ◽  
Satoshi Igi ◽  
Kenji Oi ◽  
Satoru Yabumoto

The reel-lay method is a fast and cost efficient installation process for offshore rigid steel pipelines. Pipelines installed by the reel-lay method are plastically deformed due to reeling, unreeling, aligning and straightening during pipeline installation. Therefore, local buckling is one of the major concerns from a view point of integrity in linepipes, especially around girth welds where strength mismatching arises due to adjacent pipes with different yield strength. One the other hand, the change in mechanical properties of linepipes during reel-lay, including coating process (e.g. 250°C) and long time exposure (e.g. 250°C aging) after installation is also important in order to guarantee safety of linepipes. Furthermore fracture toughness at girth weld Coarse-grain HAZ (CGHAZ) after reeling and aging should be clear to prevent brittle fracture of offshore linepipes in service. In this study, full scale reeling simulation tests of girth welded X60 HFW (High Frequency electric resistance Welded) linepipes with OD; 323.9mm and WT;15.9mm after full body heat treatment (coating simulation) were conducted at 5cycles and 2cycles reeling and straightening situations when yield strength mismatches are present between adjacent pipes around girth welds. Localized strain concentration was observed near girth welds by strength mismatching of adjacent pipes. DNV ovality increased with increasing reeling and straightening cycles, however the ovality did not exceed 10%, which was a criterion value for local buckling, after 5cycles reeling simulation test. The change ratio of wall thickness after full scale reeling simulation tests were about ±2% (within DNV-OS-F101 tolerance) regardless of circumferential and longitudinal direction of pipes. Longitudinal tensile properties could be characterized by axial last introduced plastic strain. That is, in the positive number of last introduced plastic strain, YS and Y/T increased, while uEl decreased by work hardening effect. On the other hand YS and Y/T decreased, while uEl increased at the negative number of last introduced plastic strain by Bauschinger effect. Circumferential tensile properties could be also characterized by axial last introduced plastic strain. Yield strength and Y/T slightly increased while uniform elongation slightly decreased by aging at longitudinal and circumferential direction. Tensile properties did not change irrespective of the number of cycles of reeling simulation tests. After 5cycles reeling simulation test and aging, girth welded CGHAZ CTOD values were over 0.4mm at −20°C and Charpy absorbed energy were over 200J at −30°V, therefore, it was considered that the brittle fracture of the girth welded linepipe unlikely occur at reeling and aging situation in this study.

2006 ◽  
Vol 306-308 ◽  
pp. 857-862 ◽  
Author(s):  
Taisuke Sasaki ◽  
Tokuteru Uesugi ◽  
Yorinobu Takigawa ◽  
Kenji Higashi

The effect of manganese on strength and fracture toughness was investigated using five kinds of Mg-6Al-1Zn alloys. From the experimental results, the yield strength increased with increasing in manganese content until manganese content reached 0.14 wt. %. On the other hand, further increase in yield strength was not observed in case larger than 0.14 % of manganese was added. In addition, fracture toughness decreases with increasing manganese content. Fracture of magnesium alloy was ductile fracture by void coalescence. Adding excessive amount of manganese caused the increase in the presence of inclusions. This kind of particle easily became the nucleus of microvoid. As a conclusion, manganese should be added so that coarse manganese-bearing particle is not formed. Thus, 0.14 wt. % of manganese should be added to Mg-6Al-1Zn alloy in order to develop the alloy with well-balanced relationship between strength and fracture toughness.


1976 ◽  
Vol 19 (1) ◽  
pp. 163-189 ◽  
Author(s):  
Michael Jabara Carley

On 26 April 1920 the Polish army launched a major offensive against Soviet Russia. The question of the French government's role in the unleashing of this attack has long been a matter of historical debate. P. S. Wandycz, whose work is the most recent detailed account of French eastern policy during the early twenties, attributes no major responsibility to the French for the outbreak of all-out war on Poland's eastern frontier. He states that the Quai d'Orsay was unenthusiastic about a Polish campaign and that the Poles had acted on their own initiative. N. Davies asserts that ‘Allied policy sought to discourage Poland from attacking Russia.’ ‘Without formally forbidding a Polish offensive,’ he writes, the Allies ‘emphasized that it “the offensive’ could not enjoy their support. On the other hand, Soviet and European Left-wing opinion has long condemned the Polish attack as a direct result of French influence. Vladimir Potemkin noted that Poland was incapable of waging a full-scale war with its own resources and that consequently Allied influence had to be decisive in determining Warsaw's attitude toward a continuation of the war.


2014 ◽  
Vol 699 ◽  
pp. 169-174
Author(s):  
Achmad Zubaydi ◽  
Nurul Muhayat ◽  
Budie Santosa ◽  
Dony Setyawan

Double sided friction stir butt welds on 6 mm thick of 5083 aluminum alloy were produced. Two variants of the weld side combination, different weld side (DS) and same weld side (SS), have been made to investigate the effect of the weld side on mechanical properties.The SS is a double sided welding process that produces advancing side in one plate and retreating side in the other one. On the other hand, the DS is a double sided welding process that causes advancing side and retreating side in each plate. Tensile properties of the joints were evaluated and correlated with macrostructure and hardness. The weld side influenced the macrostructure and mechanical properties of welded joints. The different weld side (DS) had better mechanical properties than the same weld side (SS).


Author(s):  
Hadi Miyanaji ◽  
Ali Keshavarz Panahi ◽  
Ramin Hajavifard

One of the new methods of producing materials that have ultra-fine grains or grains of nanometer size is the method of severe plastic deformation (SPD). In this technique, by applying severe strains to the samples, the size of the grains is reduced to the nano scale, and as a result, the mechanical properties of the metal (including the yield strength and resistance to wear and abrasion) improve considerably. In this research, the effect of the constrained groove pressing process (as one of the SPD methods) on aluminum plates was studied. In this method, two dies (one with asymmetrical grooves, and the other, flat) were used for pressing the aluminum samples. With respect to the die’s geometry, at each pressing run, a shear strain equal to 0.58 is applied to some parts of the sample. By repeating the pressing operation, a large and significant amount of plastic strain is applied throughout the sample. In the present investigation, tensile and microhardness tests were employed to determine the effect of this process on the mechanical properties of the samples,. The results showed that, by increasing the number of pressing steps, hardness and strength of the samples increase, and the elongation ability diminishes. Of course, at higher numbers of pressing steps, a little decrease in strength was observed in the samples. Complete explanations regarding this decrease have been given in the text of the article.


1962 ◽  
Vol 16 (06) ◽  
pp. 401-426
Author(s):  
J. R. Hemsted

The assessment of ordinary shares is at present the subject of intense activity. A full-scale professional analysis of a particular share can, however, be a most formidable document and one which does not produce the answer to the question ‘What long term return can I expect from my investment?’ On the other hand a simple statement of dividend cover and dividend yield at the current price is clearly insufficient to decide on the merits of a share.This paper describes a method of assessing ordinary shares in terms of ‘expected yield’, i.e. the compound interest return which a long-term buyer would expect to obtain from his investment, and includes a note on a simple way of adjusting a company's published rates of dividend and earnings to produce a consistent growth record suitable for use in estimating the expected yield.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 501
Author(s):  
Pradeep Kumar Parchuri ◽  
Shota Kotegawa ◽  
Kazuhiro Ito ◽  
Hajime Yamamoto ◽  
Akihisa Mori ◽  
...  

The shock wave damage during explosive welding has not been reported in a flyer Mo plate of the Mo/Cu clads. However, it would be an inevitable problem in group VI elements. This study was aimed to characterize the shock wave damage in the Mo plate, that is less brittle than a W plate, of explosive welded Mo/Cu clads. Cladding at low horizontal collision velocities leading to high collision angles was expected to enhance the shock wave damage, and the clads resulted in less elongation in bending tests. On the other hand, in the clads obtained at high horizontal collision velocities (HCVs) with low collision angles, their bending elongation increased significantly. The shock wave damage penetrated from the surface of a Mo plate to the Mo/Cu interface, and thus reducing thickness of a Mo plate of bending specimens increased bending plastic strain. The shock wave damage is associated with kinetic energy imparted to the flyer Mo plate, and thus loss of kinetic energy due to formation of an intermediate layer at the interface and reducing thickness of a flyer Mo plate would be very helpful for decrease of shock wave damage.


2012 ◽  
Vol 476-478 ◽  
pp. 2036-2041
Author(s):  
Zhen Bao Li ◽  
Wen Jing Wang ◽  
Wei Jing Zhang ◽  
Yun Da Shao ◽  
Bing Zhang ◽  
...  

3 specimens of full-scale reinforced concrete columns were tested under monotonic axial loading, in which the hoop configuration of one specimen was #, and the other two used the two-directional composite spiral hoops. The axial compressive performances of full-scale reinforced concrete columns confined by different configurations and strengths of hoops were discussed. One of the columns confined by spiral hoops used high-strength steels with the yield strength of 1000MPa as hoops, while the other two columns used ordinary-strength steel with yield strength of 400MPa. Columns confined by spiral hoops exhibited slight higher bearing capacity and better deformation ability than columns with hoop configuration #. The results also indicated that compared with the specimen used ordinary-strength hoops, the bearing capacity of the specimen used high-strength hoops was basically the same, but the deformation ability improved obviously.


2011 ◽  
Vol 16 (4) ◽  
pp. 205-209 ◽  
Author(s):  
Matthias Zick Varul

Drawing on Veblen's concept of ‘pecuniary prowess’ I will argue that the August riots can be understood not so much in terms of protest but as an appropriation of the underlying acquisitive logic of capitalism. The violent realisation of that logic across class divides has become more likely due to an erosion in plausibility of discourses of meritocratic legitimacy. Recent denigrating discourses around “chavs” as dangerous and undeserving poor can be understood as attempts to reinstate meritocratic legitimacy rhetorically, but in an increasingly unequal society this becomes an ever more difficult enterprise. On the other hand, the assertion of the order of property through an effective police response may have eased the pressure by providing evidence that anxieties about a full scale insurgence are unfounded.


1994 ◽  
Vol 364 ◽  
Author(s):  
K. Ishikawa ◽  
K. Aoki ◽  
T. Masumoto

AbstractThe effect of simultaneous alloying of boron (B) and the substitutional elements M on mechanical properties of Ni3Al was investigated by the tensile test at room temperature. The yield strength of Ni3Al+B increases by alloying with M except for Fe and Ga. In particular, it increases by alloying with Hf, Nb, W, Ta, Pd and Si. The fracture strength of Ni3Al+B increases by alloying with Pd, Ga, Si and Hf, but decreases with the other elements. Elongation of Ni3Al+B increases by alloying with Ga, Fe and Pd, but decreases with other elements. Hf and Pd is the effective element for the increase of the yield strength and the fracture strength of Ni3Al+B, respectively. Alloying with Hf leads to the increases of the yield strength and the fracture strength of Ni3Al+B, but to the lowering of elongation. On the other hand, alloying with Pd improves all mechanical properties, i.e. the yield strength, the fracture strength and elongation. On the contrary, alloying with Ti, V and Co leads to the lowering of mechanical properties of Ni3Al+B. The reason why ductility of Ni3Al+B is reduced by alloying with some elements M is discussed.


2011 ◽  
Vol 1297 ◽  
Author(s):  
Taek-Kyun Jung ◽  
Dong-Woo Joh ◽  
Hyo-Soo Lee ◽  
Hyuk-Chon Kwon

ABSTRACTEffects of Ag content on microstructure, mechanical properties, and electrical conductivity in long time aged Cu-Ti-Ag alloys were investigated. In short time ageing condition, both electrical conductivity and mechanical properties were enhanced by Ag addition. On the other hand, in long time ageing condition, Ag addition showed a faster deterioration of mechanical properties than Ag free CuTi alloys.


Sign in / Sign up

Export Citation Format

Share Document