Stochastic Linearization and its Application in Motion Analysis of Cylindrical Floating Structure With Bilge Boxes

Author(s):  
Yan-Lin Shao ◽  
Jikun You ◽  
Einar Bernt Glomnes

To account for the viscous effects of damping devices, for instance, bilge keels or bilge boxes, on the motions of ships and offshore structures, Morison’s equation is often adopted as an empirical but practical approach in the design process. In order to combine the standard engineering panel method with the drag term in Morison’s equation, and remain in the frequency domain, the drag term has to be linearized based on, for instance, stochastic linearization. In this paper, the stochastic linearization scheme is implemented in an in-house code and verified through the comparison with the DNV GL software WADAM. The model test results of a large cylindrical FPSO with bilge box are used to calibrate the drag coefficients in the Morison’s equation. When the linearized drag forces are included, heave motion RAOs correspond better to the model test results. However, the predicted natural periods of heave motions are seen to be smaller than those obtained from model tests. It is suspected that the viscous flow separation around the bilge box increases the added mass of the unit beyond what is predicted by potential flow alone. Discussions are made on the effect of viscous added mass on the heave natural period. It is quite common to only include the damping effects in the motion analysis for large offshore structures and ignore the contribution of the viscous effects on the excitation force. For the considered cylindrical FPSO, this paper demonstrates that the viscous excitation force can be important in survival conditions.

2021 ◽  
Author(s):  
Arjen Koop ◽  
Pierre Crepier ◽  
Sebastien Loubeyre ◽  
Corentin Dobral ◽  
Kai Yu ◽  
...  

Abstract Estimates for roll damping are important input parameters for simulation studies on vessels operating at sea, e.g. FPSO mooring in waves, wind and current, workability and operability investigations, Dynamic Position studies, ship-to-ship operations and safety studies of vessels. To accurately predict the motions of vessels this quantity should be determined with confidence in the values. Traditionally, model experiments in water basins using so-called decay tests are carried out to determine the roll damping. With recent advancements in CFD modelling, the offshore industry has started using CFD as an alternative tool to compute the roll damping of FPSO’s. In order to help adopt CFD as a widely accepted tool, there is a need to develop confidence in CFD predictions. Therefore, a practical CFD modelling practice is developed within the Reproducible CFD JIP for roll decay CFD simulations. The Modelling Practice describes the geometry modelling, computational mesh, model set-up and post-processing for these type of CFD calculations. This modelling practice is verified and validated by three independent verifiers against available model test data. This paper provides an overview of the developed modelling practice and the calculated CFD results from the verifiers. The CFD modelling practice is benchmarked against available model test results for a tanker-shaped FPSO. By following this modelling practice, the CFD predictions for the equivalent linear damping coefficient and natural period of the roll motions are within 10% for all verifiers and within 10% from the model test results. Therefore, we conclude that when following the developed modelling practice for roll decay simulations, reliable, accurate and reproducible results can be obtained for the roll damping of tanker-shaped FPSOs.


2021 ◽  
Vol 153 (A2) ◽  
Author(s):  
R P Dallinga ◽  
R H M Huijsmans

Historically “scale effects” in the interpretation of tests with scale models in waves using Froude’s Law of Similitude are mostly associated with viscous effects. Nowadays, with a much more complete modelling of reality and a focus on higher order non-linear phenomena, scaling of model test results implies a wider range of assumptions than the validity of Froude’s Law. Our contribution to the conference is a visionary review of contemporary and future problems in the interpretation of these tests. In this context we will discuss the developments in test techniques, including the development of a new Two-Phase Laboratory facilitating seakeeping and sloshing tests at reduced air pressure.


Author(s):  
Fahd Fathi ◽  
Christiaan Klaij ◽  
Arjen Koop

The Current Affairs Joint Industry Project was initiated to develop the understanding and tools for the assessment of current loads on offshore structures. CFD is one of these tools requiring a good understanding of the underlying physical and mathematical models. In order to assess its suitability for the prediction of current loads on monohulls, the flow around a LNG carrier for which model scale data is available was considered. The LNG carrier, including bilge–keels and rudder, was towed at scale 1/50 in Marin’s shallow water basin during the HAWAI JIP, for flow angles between 0 and 180 degrees. The measurements were shared with the Current Affairs JIP, for which the participants were invited to perform CFD computations reproducing the model test results. A number of these simulations are presented in this paper. The analysis of the results includes discussion on the grid generation as well as the numerical and physical parameters of the simulation. The comparison between experiments and computations shows that CFD can provide good qualitative predictions for the variation of force coefficients with inflow angle. The origin of the result variability between the participants is discussed and attention is drawn to the different factors influencing the quality of the simulation.


Author(s):  
Thomas B. Johannessen ◽  
Øystein Lande ◽  
Øistein Hagen

For offshore structures in harsh environments, horizontal wave impact loads should be taken into account in design. Shafts on GBS structures, and columns on semisubmersibles and TLPs are exposed to impact loads. Furthermore, if the crest height exceeds the available freeboard, the deck may also be exposed to wave impact loads. Horizontal loads due to waves impacting on the structure are difficult to quantify. The loads are highly intermittent, difficult to reproduce in model tests, have a very short duration and can be very large. It is difficult to calculate these loads accurately and the statistical challenges associated with estimating a value with a prescribed annual probability of occurrence are formidable. Although the accurate calculation of crest elevation in front of the structure is a significant challenge, industry has considerable experience in handling this problem and the analysis results are usually in good agreement with model test results. The present paper presents a statistical model for the distribution of horizontal slamming pressures conditional on the incident crest height upwave of the structure. The impact load distribution is found empirically from a large database of model test results where the wave impact load was measured simultaneously at a large number of panels together with the incident crest elevation. The model test was carried out on a circular surface piercing column using long simulations of longcrested, irregular waves with a variety of seastate parameters. By analyzing the physics of the process and using the measured crest elevation and the seastate parameters, the impact load distribution model is made seastate independent. The impact model separates the wave impact problem in three parts: – Given an incident crest in a specified seastate, calculate the probability of the crest giving a wave impact load above a threshold. – Given a wave impact event above a threshold, calculate the distribution of the resulting peak load. – Given a peak load, calculate the distribution of slamming pressures at one spatial location. The development of the statistical model is described and it is shown that the model is appropriate for fixed and floating structures and for wave impact with both columns and the deck box.


2013 ◽  
Vol 12 (3) ◽  
Author(s):  
Iskendar Iskendar ◽  
Andi Jamaludin ◽  
Paulus Indiyono

This paper describes hydrodynamic model tests of Wing in Surface Effect (WiSE) Craft. These craft  was fitted with  stephull  form in different location on longitudinal flat bottom (stepedhull planning craft) to determine the influences of sticking and porpoising motion performances. These motions are usually occured when the craft start to take-off from water surfaces. The test models with scale of 1 : 7 were comprised of 4 (four) stephull models and 1 (one) non-stephull model  as a comparative study. The hydrodynamic  tests were performed with craft speed of 16 – 32 knots (prototype values) in Towing Tank at UPT. Balai Pengkajian dan Penelitian Hidrodinamika (BPPH), BPPT, Surabaya. The resistance (drag) was measured by dynamo meter and the trim of model (draft changing at fore and aft  of model due to model speed) was measured by trim meter. By knowing the value of model trim, the wetted surface area can be determined. Then, the lift forces were calculated based on these measured values. The model test results were presented on tables and curves.  Test results show that models  with step located far away from center of gravity of the WiSE craft tend to porpoising and sticking condition, except if the step location on the below of these center of gravity. While model without step tends to sticking conditions.


Author(s):  
Y. S. Kim ◽  
K. O. Kim ◽  
Y. Cho ◽  
S. Bang ◽  
K. D. Jones

An analytical solution has been developed to estimate the inclined pullout capacity of an embedded suction anchor in clay seafloor. Validation has been made through comparisons with a limited number of centrifuge model test results. Results indicate that the inclined pullout capacity of an embedded suction anchor in clay decreases as the load inclination angle to the horizontal increases. As the point of the load application moves downward, the inclined pullout capacity increases, reaches its peak, and then starts to decrease.


1998 ◽  
Vol 14 (04) ◽  
pp. 265-276
Author(s):  
Ivo Senjanovic

This review paper covers extensive investigations which were undertaken in order to verify the idea of launching of ships and other floating structures from a horizontal berth by a set of turning pads. This includes structural dynamics during launching, model tests and strength analysis of the structure and the launching system. The most important results, which were used for the design of the launching system, are presented. The preparation of a barge for side launching is described, and the full-scale measurement results are compared with the test results. The advantages of building ships and offshore structures on a horizontal berth are pointed out in the conclusion.


2021 ◽  
Author(s):  
Xiangbiao Wang ◽  
Chun Bao Li ◽  
Ling Zhu

Abstract Ship collision accidents occur from time to time in recent years, and this would cause serious consequences such as casualties, environmental pollution, loss of cargo on board, damage to the ship and its equipment, etc. Therefore, it is of great significance to study the response of ship motion and the mechanism of structural damage during the collision. In this paper, model experiments and numerical simulation are used to study the ship-ship collision. Firstly, the Coupled Eulerian-Lagrangian (CEL) was used to simulate the fluid-structure interaction for predicting structural deformation and ship motion during the normal ship-ship collision. Meanwhile, a series of model tests were carried out to validate the numerical results. The validation presented that the CEL simulation was in good agreement with the model test. However, the CEL simulation could not present the characteristics the time-dependent added mass.


Author(s):  
Sang-Yeob Kim ◽  
Yonghwan Kim ◽  
Yang-Jun Ahn

This paper introduces an outlier analysis which can improve the convergence of the statistical analysis results of sloshing model test data. The paper classify possible outliers in the sloshing model test into three categories and present a treatment method for each outlier. The developed outlier analysis is adapted to the model test results for the cargo of the liquefied-natural-gas (LNG) carrier in operation. The results of the present new method are compared with those of the conventional procedure, particularly focusing on long-term sloshing prediction. Through this study, the effectiveness of the present method is observed, and it is found that the present method provides is robust and reliable results in the application of experimental data for load prediction.


Sign in / Sign up

Export Citation Format

Share Document