Estimating Zonal Flow Contributions in Deep Water Assets From Pressure and Temperature Data

Author(s):  
A. Rashid Hasan ◽  
Rayhana N. Sohel ◽  
Xiaowei Wang

Producing hydrocarbon from deep water assets is extremely challenging and expensive. A good estimate of rates from multiple pay zones is essential for well monitoring, surveillance, and workover decisions. Such information can be gleaned from flowing fluid pressure and temperature; deep-water wells are often well instrumented that offers such data on a continuous basis. In this study a model is presented that estimates zonal flow contributions based on energy and momentum balances. Kinetic and heat energy coming from the reservoir fluid to the production tubing is accounted for in the model. The momentum balance for wellbore takes into account differing flow profile in laminar and turbulent flows. In addition, when sandface temperature data are not available, a recently developed analytical model to estimate the effect of Joule-Thompson expansion on sandface temperature was used to estimate sandface temperature from reservoir temperature. The model developed can be applied to any reservoir with multiple pay zones and is especially useful for deep-water assets where production logging is practically impossible. Available field data for multiphase flow was used to validate the model. Sensitivity analyses were performed that showed accurate temperature data is essential for the model to estimate zonal contribution accurately.

Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1035 ◽  
Author(s):  
Magnus Harrold ◽  
Pablo Ouro

Tidal turbines are subject to highly dynamic mechanical loading through operation in some of the most energetic waters. If these loads cannot be accurately quantified at the design stage, turbine developers run the risk of a major failure, or must choose to conservatively over-engineer the device at additional cost. Both of these scenarios have consequences on the expected return from the project. Despite an extensive amount of research on the mechanical loading of model scale tidal turbines, very little is known from full-scale devices operating in real sea conditions. This paper addresses this by reporting on the rotor loads measured on a 400 kW tidal turbine. The results obtained during ebb tidal conditions were found to agree well with theoretical predictions of rotor loading, but the measurements during flood were lower than expected. This is believed to be due to a disturbance in the approaching flood flow created by the turbine frame geometry, and, to a lesser extent, the non-typical vertical flow profile during this tidal phase. These findings outline the necessity to quantify the characteristics of the turbulent flows at sea sites during the entire tidal cycle to ensure the long-term integrity of the deployed tidal turbines.


1992 ◽  
Vol 263 ◽  
Author(s):  
M. Papoular

ABSTRACTAs demonstrated by recent STM [1] and LEED [2] experiments the platinum (110) surface undergoes, at carbon monoxide submonolayer coverages, a phase transition from the 1 x 2 “missing-row” (reconstructed) state to the 1 x 1(bulk-like) state under specific temperature and partial-pressure conditions. The catalytic oxidation reaction CO + 1/2 → CO2 drives a microfaceting instability [3] [4] of the Pt(110) surface which ends up in a regular sawtooth profile with a period ≈ 200 Å, along the [110] direction.We introduce the idea that the rather extensive Pt mass transport, as involved in the process, could be energetically assisted by the reaction itself. Energy and momentum-balance considerations lead us to expect an energy ≲ 0.5 eV to be transferrable to thesubstrate. This should efficiently contribute to initiating the “scraping”process that leads to the microfaceted pattern.A simple model for nucleation and growth of facets is presented (see ref. 5), yielding characteristic times of order minutes (at T = 500 K), in fair agreement with experiment.Independently of the structural/catalytic problem, adsorption of CO at submonolayer coverages on, e.g., Pt(110) might be of interest from a surfactantphysics point of view (see ref. 6 for a very recent study on layer-by-layer homoepitaxial metal growth).


2006 ◽  
Vol 2 (S237) ◽  
pp. 172-176
Author(s):  
Andrew J Cunningham ◽  
Adam Frank ◽  
Eric G Blackman ◽  
Alice Quillen

AbstractThe ubiquity and high density of outflows from young stars in clusters make them an intriguing candidate for the source of turbulence energy in molecular clouds. In this contribution we discuss new studies, both observational and theoretical, which address the issue of jet/outflow interactions and their ability to drive turbulent flows in molecular clouds. Our results are surprising in that they show that fossil cavities, rather than bow shocks from active outflows, constitute the mechanism of re-energizing turbulence. We first present simulations which show that collisions between active jets are ineffective at converting directed momentum and energy in outflows into turbulence. This effect comes from the ability of radiative cooling to constrain the surface area through which colliding outflows entrain ambient gas. We next discuss observational results which demonstrate that fossil cavities from “extinct” outflows are abundant in molecular material surrounding clusters such as NGC 1333. These structures, rather than the bow shocks of active outflows, comprise the missing link between outflow energy input and re-energizing turbulence. In a separate theoretical/simulation study we confirm that the evolution of cavities from decaying outflow sources leads to structures which match the observations of fossil cavities. Finally we present new results of outflow propagation in a fully turbulent medium exploring the explicit mechanisms for the transfer of energy and momentum between the driving wind and the turbulent environment.


2021 ◽  
Vol 9 ◽  
Author(s):  
Tim R. McHargue ◽  
David M. Hodgson ◽  
Eitan Shelef

Lobate deposits in deep-water settings are diverse in their depositional architecture but this diversity is under-represented in the literature. Diverse architectures result from multiple factors including source material, basin margin physiography, transport pathway, and depositional setting. In this contribution, we emphasize the impact of differing source materials related to differing delivery mechanisms and their influence on architecture, which is an important consideration in source-to-sink studies. Three well imaged subsurface lobate deposits are described that display three markedly different morphologies. All three lobate examples, two from intraslope settings offshore Nigeria and one from a basin-floor setting offshore Indonesia, are buried by less than 150 m of muddy sediment and are imaged with high resolution 3D reflection seismic data of similar quality and resolution. Distinctively different distributary channel patterns are present in two of the examples, and no comparable distributaries are imaged in a third example. Distributary channels are emphasized because they are objectively recognized and because they often represent elements of elevated fluid content within buried lobate deposits and thus influence permeability structure. We speculate that the different distributary channel patterns documented here resulted from different processes linked to source materials: 1) a lobate deposit that is pervasively channelized by many distributaries that have branched at numerous points is interpreted to result from comparatively mud-rich, stratified, turbulent flows; 2) an absence of distributaries in a lobate deposit is interpreted to result from collapse of mud-poor, turbulent flows remobilized from littoral drift; and 3) a lobate deposit with only a few, long, straight distributaries with few branching points is interpreted to be dominated by highly viscous flows (i.e., debris flows). We propose a conceptual model that illustrates the relationship between the proportion of mud in contributing flows and the relative size and runout distance of lobate deposits. We conclude that reconciling 3D seismic morphologies with outcrop observations of channels, scours, and amalgamation zones, and simple application of hierarchical schemes, is problematic. Furthermore, when characterizing unconfined deep-water deposits in the subsurface, multiple models with significant differences in predicted permeability structure should be considered.


2007 ◽  
Vol 64 (11) ◽  
pp. 4031-4052 ◽  
Author(s):  
Peter L. Read ◽  
Yasuhiro H. Yamazaki ◽  
Stephen R. Lewis ◽  
Paul D. Williams ◽  
Robin Wordsworth ◽  
...  

Abstract The banded organization of clouds and zonal winds in the atmospheres of the outer planets has long fascinated observers. Several recent studies in the theory and idealized modeling of geostrophic turbulence have suggested possible explanations for the emergence of such organized patterns, typically involving highly anisotropic exchanges of kinetic energy and vorticity within the dissipationless inertial ranges of turbulent flows dominated (at least at large scales) by ensembles of propagating Rossby waves. The results from an attempt to reproduce such conditions in the laboratory are presented here. Achievement of a distinct inertial range turns out to require an experiment on the largest feasible scale. Deep, rotating convection on small horizontal scales was induced by gently and continuously spraying dense, salty water onto the free surface of the 13-m-diameter cylindrical tank on the Coriolis platform in Grenoble, France. A “planetary vorticity gradient” or “β effect” was obtained by use of a conically sloping bottom and the whole tank rotated at angular speeds up to 0.15 rad s−1. Over a period of several hours, a highly barotropic, zonally banded large-scale flow pattern was seen to emerge with up to 5–6 narrow, alternating, zonally aligned jets across the tank, indicating the development of an anisotropic field of geostrophic turbulence. Using particle image velocimetry (PIV) techniques, zonal jets are shown to have arisen from nonlinear interactions between barotropic eddies on a scale comparable to either a Rhines or “frictional” wavelength, which scales roughly as (β/Urms)−1/2. This resulted in an anisotropic kinetic energy spectrum with a significantly steeper slope with wavenumber k for the zonal flow than for the nonzonal eddies, which largely follows the classical Kolmogorov k−5/3 inertial range. Potential vorticity fields show evidence of Rossby wave breaking and the presence of a “hyperstaircase” with radius, indicating instantaneous flows that are supercritical with respect to the Rayleigh–Kuo instability criterion and in a state of “barotropic adjustment.” The implications of these results are discussed in light of zonal jets observed in planetary atmospheres and, most recently, in the terrestrial oceans.


2010 ◽  
Vol 7 (4) ◽  
pp. 1271-1278 ◽  
Author(s):  
J. Hong ◽  
J. Kim ◽  
H. Ishikawa ◽  
Y. Ma

Abstract. Turbulence statistics such as flux-variance relationship are critical information in measuring and modeling ecosystem exchanges of carbon, water, energy, and momentum at the biosphere-atmosphere interface. Using a recently proposed mathematical technique, the Hilbert-Huang transform (HHT), this study highlights its possibility to quantify impacts of non-turbulent flows on turbulence statistics in the stable surface layer. The HHT is suitable for the analysis of non-stationary and intermittent data and thus very useful for better understanding the interplay of the surface layer similarity with complex nocturnal environment. Our analysis showed that the HHT can successfully sift non-turbulent components and be used as a tool to estimate the relationships between turbulence statistics and atmospheric stability in complex environments such as nocturnal stable boundary layer.


2014 ◽  
Vol 13 (2) ◽  
pp. 41
Author(s):  
B. I. Favacho ◽  
J. R. P. Vaz ◽  
A. L. A. Mesquita

The navigation in Amazon region is very important due to the length of navigable rivers and the lack of alternative road network, as well as being a form of transportation costless for the flow of agricultural and manufacturing production. This kind of transportation present social, economic and technological importance for this region. Thus, this work objective to develop a mathematical approach for the marine propellers design, using a formulation for chord and pitch angle optimization, taken into account the equations of mass, energy and momentum balance for the theoretical calculation of thrust and torque relationships on an annular control volume, ie, the mathematical model is based in the Blade Element Momentum (BEM) theory. The proposed hydrodynamic model present low computational cost and it is easy to implement. The results are compared with classical Glauert's theory and the experimental data of the Wageningen B3-50 propeller, presenting good agreement.


2007 ◽  
Vol 576 ◽  
pp. 27-61 ◽  
Author(s):  
ANN E. GARGETT ◽  
JUDITH R. WELLS

During extended deployment at an ocean observatory off the coast of New Jersey, a bottom-mounted five-beam acoustic Doppler current profiler measured large-scale velocity structures that we interpret as Langmuir circulations filling the entire water column. These circulations are the large-eddy structures of wind-wave-driven turbulent flows that occur episodically when a shallow water column experiences prolonged strong wind forcing. Many observational characteristics agree with former descriptions of Langmuir circulations in deep water. The three-dimensional velocity field reveals quasi-organized structures consisting of pairs of surface-intensified counter-rotating vortices, aligned approximately downwind. Maximum downward velocities are stronger than upward velocities, and the downwelling region of each cell, defined as a pair of vortices, is narrower than the upwelling region. Maximum downward vertical velocity occurs at or above mid-depth, and scales approximately with wind speed. The estimated crosswind scale of cells is roughly 3–6 times their vertical scale, set under these conditions by water depth. The long axis of the cells appears to lie at an angle ∼10°–20° to the right of the wind. A major difference from deep-water observations is strong near-bottom intensification of the downwind ‘jets’ found typically centred over downwelling regions. Accessible observational features such as cell morphology and profiles of mean velocities, turbulent velocity variances, and shear stress components are compared with the results of associated large-eddy simulations (reported in Part 2) of shallow water flows driven by surface stress and the Craik–Leibovich vortex forcing generally used to represent generation of Langmuir cells. A particularly sensitive diagnostic for identification of Langmuir circulations as the energy-containing eddies of the turbulent flow is the depth trajectory of invariants of the turbulent stress tensor, plotted in the Lumley ‘triangle’ corresponding to realizable turbulent flows. When Langmuir structures are present in the observations, the Lumley map is distinctly different from that of surface-stress-driven Couette flow, again in agreement with the large-eddy simulations (LES). Unlike the LES, observed velocity fields contain two distinct and significant scales of variability, documented by wavelet analysis of observational records of vertical velocity. Variability with periods of many minutes is that expected from Langmuir cells drifting past the instrument at the slowly time-varying crosswind velocity. Shorter period variability, of the order of 1–2 min, has roughly the observed periodicity of surface wave groups, suggesting a connection with the wave groups themselves and/or the wave breaking associated with them in high wind conditions.


2015 ◽  
Vol 2015 ◽  
pp. 1-11
Author(s):  
Xiong Chen ◽  
Ren-Shi Nie ◽  
Yong-Lu Jia ◽  
Lin-Xiang Sang

It is extremely important to monitor the development of steam chambers in reservoirs in the process of SAGD (Steam Assisted Gravity Drainage). By analyzing the temperature data of monitoring wells, the extending velocity and direction of steam chamber can be obtained, which helps to regulate and improve production effectively. Based on Stefan’s inverse problem, a mathematical model is established in this paper for acquiring the extending velocity of steam chamber by using the temperature data of monitoring wells. Mathematical methods are utilized to solve the model such as Fourier transformation as well as an analytic solution using the moving velocity of steam chamber’s edges. Finally, sensitivity analyses concerning some factors such as the formation heat transfer coefficient, the temperature of steam chamber, and the rate of temperature rise of monitoring wells are made. Field application showed that the model can be used to calculate the moving velocity in real time and determine the boundary scope of the steam chambers easily.


Sign in / Sign up

Export Citation Format

Share Document