Hydrodynamic Performance of a Current Energy Generator Based on WIG

Author(s):  
Jian Wang ◽  
Guanghua He ◽  
Weijie Mo ◽  
Shijun Zhang ◽  
Jiangtao Man

Abstract The hydrodynamic performance of a novel current energy generator is studied with consideration of the effect of Wing in Ground (WIG) by Star CCM+. The pitch and heave motions of a turbine with a 2D single oscillating wing and two parallelized oscillating wings in uniform flow are simulated, and the numerical results including the lift force, drag force and moment coefficients of the hydrofoil are calculated to analyze the hydrodynamic performance of the generator. First, the convergence studies with respect to the mesh and time step are firstly carried out by compared with the published data. Secondly, the hydrodynamic performance of the WIG-based current energy extraction is investigated, and a good performance of the current energy extraction is confirmed. Finally, the effect of boundary conditions of wing and wall on the performance of the current energy generator is investigated.

2013 ◽  
Vol 284-287 ◽  
pp. 557-561
Author(s):  
Jie Li Fan ◽  
Wei Ping Huang

The two-degrees-of-freedom VIV of the circular cylinder with high mass-ratio is numerically simulated with the software ANSYS/CFX. The VIV characteristic is analyzed in the different conditions (Ur=3, 5, 6, 8, 10). When Ur is 5, 6, 8 and 10, the conclusion which is different from the cylinder with low mass-ratio can be obtained. When Ur is 3, the frequency of in-line VIV is twice of that of cross-flow VIV which is equal to the frequency ratio between drag force and lift force, and the in-line amplitude is much smaller than the cross-flow amplitude. The motion trace is the crescent. When Ur is 5 and 6, the frequency ratio between the drag force and lift force is still 2, but the main frequency of in-line VIV is mainly the same as that of cross-flow VIV and the secondary frequency of in-line VIV is equal to the frequency of the drag force. The in-line amplitude is still very small compared with the cross-flow amplitude. When Ur is up to 8 and 10, the frequency of in-line VIV is the same as the main frequency of cross-flow VIV which is close to the inherent frequency of the cylinder and is different from the frequency of drag force or lift force. But the secondary frequency of cross-flow VIV is equal to the frequency of the lift force. The amplitude ratio of the VIV between in-line and cross-flow direction is about 0.5. When Ur is 5, 6, 8 and 10, the motion trace is mainly the oval.


1961 ◽  
Vol 28 (2) ◽  
pp. 288-291 ◽  
Author(s):  
H. D. Conway

The bending by uniform lateral loading, buckling by two-dimensional hydrostatic pressure, and the flexural vibrations of simply supported polygonal plates are investigated. The method of meeting the boundary conditions at discrete points, together with the Marcus membrane analog [1], is found to be very advantageous. Numerical examples include the calculation of the deflections and moments, and buckling loads of triangular square, and hexagonal plates. A special technique is then given, whereby the boundary conditions are exactly satisfied along one edge, and an example of the buckling of an isosceles, right-angled triangle plate is analyzed. Finally, the frequency equation for the flexural vibrations of simply supported polygonal plates is shown to be the same as that for buckling under hydrostatic pressure, and numerical results can be written by analogy. All numerical results agree well with the exact solutions, where the latter are known.


2003 ◽  
Vol 9 (1-2) ◽  
pp. 175-185 ◽  
Author(s):  
G. H.M. Van Der Heijden ◽  
J. M.T. Thompson ◽  
S. Neukirch

We show how an energy analysis can be used to derive the equilibrium equations and boundary conditions for an end-loaded variable ply much more efficiently than in previous works. Numerical results are then presented for a clamped balanced ply approaching lock-up. We also use the energy method to derive the equations for a more general ply made of imperfect anisotropic rods and we briefly consider their helical solutions.


1978 ◽  
Vol 45 (4) ◽  
pp. 812-816 ◽  
Author(s):  
B. S. Berger ◽  
B. Alabi

A solution has been derived for the Navier equations in orthogonal cylindrical curvilinear coordinates in which the axial variable, X3, is suppressed through a Fourier transform. The necessary coordinate transformation may be found either analytically or numerically for given geometries. The finite-difference forms of the mapped Navier equations and boundary conditions are solved in a rectangular region in the curvilinear coordinaties. Numerical results are given for the half space with various surface shapes and boundary conditions in two and three dimensions.


Author(s):  
Cemil Bagci

Abstract Exact elasticity solutions for stresses and deflections (displacements) in curved beams and rings of varying thicknesses are developed using polar elasticity and state of plane stress. Basic forms of differential equations of equilibrium, stress functions, and differential equations of compatibility are given. They are solved to develop expressions for radial, tangential, and shearing stresses for moment, force, and combined loadings. Neutral axis location for each type of loading is determined. Expressions for displacements are developed utilizing strain-displacement relationships of polar elasticity satisfying boundary conditions on displacements. In case of full rings stresses are as in curved beams with properly defined moment loading, but displacements differ satisfying different boundary conditions. The developments for constant thicknesses are used to develop solutions for curved beams and rings with T-sections. Comparative numerical results are given.


Author(s):  
M.V. Sukhoterin ◽  
◽  
A.M. Maslennikov ◽  
T.P. Knysh ◽  
I.V. Voytko ◽  
...  

Abstract. An iterative method of superposition of correcting functions is proposed. The partial solution of the main differential bending equation is represented by a fourth-degree polynomial (the beam function), which gives a residual only with respect to the bending moment on parallel free faces. This discrepancy and the subsequent ones are mutually compensated by two types of correcting functions-hyperbolic-trigonometric series with indeterminate coefficients. Each function satisfies only a part of the boundary conditions. The solution of the problem is achieved by an infinite superposition of correcting functions. For the process to converge, all residuals must tend to zero. When the specified accuracy is reached, the process stops. Numerical results of the calculation of a square ribbed plate are presented.


2018 ◽  
Vol 35 (6) ◽  
pp. 2386-2402 ◽  
Author(s):  
Ming Liu ◽  
Shan Cao ◽  
Shuliang Cao

Purpose The modeling of interphase forces plays a significant role in the numerical simulation of gas–liquid flow in a rotodynamic multiphase pump, which deserves detailed study. Design/methodology/approach Numerical analysis is conducted to estimate the influence of interphase forces, including drag force, lift force, virtual mass force, wall lubrication force and turbulent dispersion force. Findings The results show that the magnitude of the interphase forces can be sorted by: drag force > virtual mass force > lift force > turbulent dispersion force > wall lubrication force. The relations between interphase forces and velocity difference of gas–liquid flow and also the interphase forces and gas volume fraction are revealed. The distribution characteristics of interphase forces in the passages from impeller inlet to diffuser outlet are illustrated and analyzed. According to the results, apart from the drag force, the virtual mass force, lift force and turbulent dispersion force are required, whereas wall lubrication force can be neglected for numerical simulation of gas–liquid flow in a rotodynamic multiphase pump. Compared with the conventional numerical method which considers drag force only, the relative errors of predicted pressure rise and efficiency based on the proposed numerical method in account of four major forces can be reduced by 4.95 per cent and 3.00 per cent, respectively. Originality value The numerical analysis reveals the magnitude and distribution of interphase forces inside multiphase pump, which is meaningful for the simulation and design of multiphase pump.


Energy saving can be maximized by rectifying the intermediate conversion processes involved during the utilization of solar energy. The system eliminates the transformation of electrical form of solar energy into another form by directly utilizing its electrical energy in the management and control of power supplies obtained from renewable (solar) and conventional (mains) energy sources. A current control scheme is presented in which current delivered by solar supply is used to control the current in mains supply in such a way that both currents are inversely proportional to each other. Any increment in solar current opposes mains current in the same proportion and vice versa. A balanced common physical output is resulted from the electrical load supplied by each source separately. A natural variation in solar radiation is utilized to fluctuate the solar current which is further used to change the mains current. Energy saving is maximized in this supply management by the optimal utilization of solar energy.


2021 ◽  
Author(s):  
BIPLAB BHATTACHARJEE ◽  
PRASUN CHAKRABORTI ◽  
KISHAN CHOUDHURY

Abstract In this article a mathematical model of single layered nano-fluid lubricated PJB (porous journal bearing) has been formulated. The nano-lubricant's impact on the efficiency of said journal bearing has been studied using modified Darcy's law and boundary conditions. The different nanoparticles often used as an additive in industrial lubricating oils improve their viscosity significantly. The brief description of dimensionless performance characteristics of the investigated bearing was obtained by the use of the nano-lubricant's modified Krieger-Dougherty viscosity model. The observations revealed that the output characteristics are substantially improved by using nano-lubricant. The present study was validated by comparing the findings of recently published data with micropolar fluid and was found to be completely compatible since data with nano-lubricant are still unavailable.


Author(s):  
Nobuhiko Kamagata ◽  
Susumu Horio ◽  
Koichi Hishida

The active flow control, which can adapt to variation of flow velocity and/or direction, is an effective technique to achieve drag reduction. The present study has investigated a separated shear layer and established two control systems; the system reduces drag force and lift force by controlling the separated shear layer to reattachment for variation of flow velocity and /or direction. The adaptive control system to the variation of flow velocity was constructed by using a hot wire anemometer as a sensor to detect flow separation. The system to flow direction was constructed by using pressure transducers as a sensor to estimate drag force and lift force. The extremum-seeking control was introduced as a controller of the both systems. It is indicated from the experimental results that adaptive drag/lift control system to various flow velocity ranging from 3 to 7 m/s and various flow direction ranging from 0 to 30 deg. was established.


Sign in / Sign up

Export Citation Format

Share Document