Ship Collision Analysis of Double Hull Structures in Various Ship Types

2021 ◽  
Author(s):  
Jie Chen ◽  
Bin Liu ◽  
R. Villavicencio ◽  
Jian Ji ◽  
C. Guedes Soares

Abstract This paper elaborates the impact characteristics of double hull structures in various ship types including bulk carrier, container ship, LNG carrier and oil tanker. Their own structural configurations, such as the strengthened topside tank in the container ship, affect the crashworthiness of double hull structures in ship collisions. Two striking bows are modeled so as to evaluate the crashworthiness of the double hull structures. The calculations are performed using LS-DYNA to assess the impact characteristics of four struck ships. The ship collision analysis also discusses the assumption of rigid bow in conventional analysis and its effect on the evaluation of side structural crashworthiness. The numerical force-displacement responses and absorbed energy-displacement curves of various ships are compared. The comparison aims to reveal the discrepancy of the crashworthiness of the four typical double hull structures. It is of importance to analyze their structural characteristics for the design of crashworthy structures.

2011 ◽  
Vol 84-85 ◽  
pp. 199-203
Author(s):  
Wen Feng Wu ◽  
Wan Qing Wu ◽  
Zheng Mao Wang ◽  
Jian Li Yang

Ship-ship collision is a very complicated process, different collision parameters will lead to different results. Using ANSYS/LS-DYNA to build a model of ship-ship collision, it studies the side structure collision characteristics at different impact position and initial velocity. Based on the results of calculation, the collision force-displacement curves, energy absorbing-displacement curves, and the damage deformation of side structure are obtained. The simulation results indicate that changing the impact position and initial velocity will obtain the different form and degree deformation. In addition, the critical ship speed of ship shell ruptured is insured, which can offer the theoretical basis for maritime security management.


2018 ◽  
Vol 25 (s2) ◽  
pp. 42-48
Author(s):  
Wenfeng Wu ◽  
Yubin Yang ◽  
Jianwei Zhang ◽  
Jinshu Lu

Abstract Due to the great danger of the collision of oil tankers, lots of research on the collision of oil tankers has been carried out. But, at present, the research on the collision of oil tankers mainly focuses on the loading condition of the struck ship, ignores the impact on the loading condition of the striking ship. However, during the actual oil tanker collision, the striking ship is generally in the state of loading. Therefore, it is necessary to carry out the analysis of the impact of the loading condition of the striking ship on the collision damage of the oil tanker. In this paper, the effect of striking ship with loading on the impact performance of the side structure during the collision of the cargo double hull oil tanker has been investigated. The ship collision model was established by using the finite element software ANSYS/LS-DYNA which is based on 7000 tons of double hull oil tankers. Based on the analysis of the collision force, impact of striking speed changes, impact of striking deep changes and structural energy absorption during the collision process, the influence of the striking ship with loading on the damage mechanism and the impact performance of the double shell oil ship side structure was expounded. The results show that the influence of the striking ship with loading can be great to the damage to side hull during the research of the collision performance of the oil tanker.


2009 ◽  
Vol 46 (04) ◽  
pp. 183-191
Author(s):  
Jeom kee Paik ◽  
Jae Hyung Park ◽  
Emmanuel Samuelides

To mitigate the impact of consequences of ship collisions in terms of health, safety, and the environment, it has been made mandatory that hull structures of all oil tankers have double sides and double bottoms. In recent years, International Association of Classification Societies (IACS) has developed Common Structural Rules (CSR) for structural design of double-hull oil tankers on the basis of limit states, together with the traditional approach using the allowable working stress that has been a basis of pre-CSR. The application of CSR may result in some differences in terms of structural performance, among other aspects. The main objective of the present paper is to investigate the structural performance of CSRdesigned tankers associated with ship collisions. This aspect might be interesting, although CSR are not intended specifically to improve collision performance. As an illustrative example, an AFRAMAX-class double-hull oil tanker structure with same deadweight designed by both pre-CSR and CSR methods is studied by comparing their collision energy-absorption capabilities as obtained by nonlinear finite element methods. It is found that the collision performance of the CSR design could be improved by 5% to 25% compared with that of the pre-CSR design, depending on the accidental limit state criteria. However, it is concluded that the strength performance of the CSR vessel is similar to that of the pre-CSR vessel in terms of collision-accidental limit states, considering the uncertainties involved in conjunction with collision scenarios and nonlinear finite element method modeling techniques. Although the present study deals with some very specific scenarios of collisions, the insights and conclusions developed will still be useful for recognizing a structural design trend related to collision-accidental limit states


2021 ◽  
Vol 104 (3) ◽  
pp. 003685042110368
Author(s):  
Dong An ◽  
Jiaqi Song ◽  
Hailiang Xu ◽  
Jingzong Zhang ◽  
Yimin Song ◽  
...  

When the rock burst occurs, energy absorption support is an important method to solve the impact failure. To achieve constant resistance performance of energy absorption device, as an important component of the support, the mechanical properties of one kind of prefolded tube is analyzed by quasi-static compression test. The deformation process of compression test is simulated by ABAQUS and plastic strain nephogram of the numerical model are studied. It is found that the main factors affecting the fluctuation of force-displacement curve is the stiffness of concave side wall. The original tube is improved to constant resistance by changing the side wall. The friction coefficient affects the folding order and form of the energy absorbing device. Lifting the concave side wall stiffness can improve the overall stiffness of energy absorption device and slow down the falling section of force-displacement curve. It is always squeezed by adjacent convex side wall in the process of folding, with large plastic deformation. Compared with the original one, the improved prefolded tube designed in this paper can keep the maximum bearing capacity ( Pmax), increase the total energy absorption ( E), improve the specific energy absorption (SEA), and decrease the variance ( S2) of force-displacement curve.


Author(s):  
Zhihui Dou ◽  
Dapeng Zhao ◽  
Xiaohua Chen ◽  
Caipeng Xu ◽  
Xiaodong Jin ◽  
...  

AbstractBcl-x pre-mRNA splicing serves as a typical example to study the impact of alternative splicing in the modulation of cell death. Dysregulation of Bcl-x apoptotic isoforms caused by precarious equilibrium splicing is implicated in genesis and development of multiple human diseases, especially cancers. Exploring the mechanism of Bcl-x splicing and regulation has provided insight into the development of drugs that could contribute to sensitivity of cancer cells to death. On this basis, we review the multiple splicing patterns and structural characteristics of Bcl-x. Additionally, we outline the cis-regulatory elements, trans-acting factors as well as epigenetic modifications involved in the splicing regulation of Bcl-x. Furthermore, this review highlights aberrant splicing of Bcl-x involved in apoptosis evade, autophagy, metastasis, and therapy resistance of various cancer cells. Last, emphasis is given to the clinical role of targeting Bcl-x splicing correction in human cancer based on the splice-switching oligonucleotides, small molecular modulators and BH3 mimetics. Thus, it is highlighting significance of aberrant splicing isoforms of Bcl-x as targets for cancer therapy.


Author(s):  
Maria Anna Donati ◽  
Silvia Cabrini ◽  
Daniela Capitanucci ◽  
Caterina Primi ◽  
Roberta Smaniotto ◽  
...  

The COVID-19 pandemic, with the consequent lockdown of about 3 months, can be viewed as an experimental model to observe the impact of the depletion of environmental factors that stimulate gambling, particularly electronic gambling machines (EGMs) that were set to zero. The effects of some structural characteristics of gambling activities that increase gambling behavior were studied among disordered gamblers in treatment in this unique scenario. In fact, studies investigating the effects of the lockdown on problem gamblers (PGs) under treatment are missing. The aims of this study were to analyze patients’ gambling behavior and craving during the lockdown and to conduct a comparison between gambling disorder (GD) symptoms at the beginning of the treatment and during lockdown. The study was conducted in Italy, the European country with the largest gambling market and the first to be affected by the virus. Data were collected through a semi-structured telephone interview conducted by healthcare professionals. Participants were 135 PGs under treatment (109 males, mean age = 50.07). Results showed that most PGs achieved a significant improvement in their quality of life, with less gambling behavior, GD symptoms, and lower craving. No shift toward online gambling and very limited shift towards other potential addictive and excessive behaviors occurred. The longer the treatment, the more monitoring is present and the better the results in terms of symptoms reduction. Individual and environmental characteristics during the lockdown favored the reduction in symptoms. Consideration for prevention and treatment are discussed.


2021 ◽  
Vol 9 (2) ◽  
pp. 180
Author(s):  
Lei Du ◽  
Osiris A. Valdez Banda ◽  
Floris Goerlandt ◽  
Pentti Kujala ◽  
Weibin Zhang

Ship collision is the most common type of accident in the Northern Baltic Sea, posing a risk to the safety of maritime transportation. Near miss detection from automatic identification system (AIS) data provides insight into maritime transportation safety. Collision risk always triggers a ship to maneuver for safe passing. Some frenetic rudder actions occur at the last moment before ship collision. However, the relationship between ship behavior and collision risk is not fully clarified. Therefore, this work proposes a novel method to improve near miss detection by analyzing ship behavior characteristic during the encounter process. The impact from the ship attributes (including ship size, type, and maneuverability), perceived risk of a navigator, traffic complexity, and traffic rule are considered to obtain insights into the ship behavior. The risk severity of the detected near miss is further quantified into four levels. This proposed method is then applied to traffic data from the Northern Baltic Sea. The promising results of near miss detection and the model validity test suggest that this work contributes to the development of preventive measures in maritime management to enhance to navigational safety, such as setting a precautionary area in the hotspot areas. Several advantages and limitations of the presented method for near miss detection are discussed.


2021 ◽  
Vol 13 (4) ◽  
pp. 168781402110094
Author(s):  
Ibrahim Elnasri ◽  
Han Zhao

In this study, we numerically investigate the impact perforation of sandwich panels made of 0.8 mm 2024-T3 aluminum alloy skin sheets and graded polymeric hollow sphere cores with four different gradient profiles. A suitable numerical model was conducted using the LS-DYNA code, calibrated with an inverse perforation test, instrumented with a Hopkinson bar, and validated using experimental data from the literature. Moreover, the effects of quasi-static loading, landing rates, and boundary conditions on the perforation resistance of the studied graded core sandwich panels were discussed. The simulation results showed that the piercing force–displacement response of the graded core sandwich panels is affected by the core density gradient profiles. Besides, the energy absorption capability can be effectively enhanced by modifying the arrangement of the core layers with unclumping boundary conditions in the graded core sandwich panel, which is rather too hard to achieve with clumping boundary conditions.


2022 ◽  
Vol 327 ◽  
pp. 111-116
Author(s):  
Laura Schomer ◽  
Kim Rouven Riedmüller ◽  
Mathias Liewald

Interpenetrating Phase Composites (IPC) belong to a special category of composite materials, offering great potential in terms of material properties due to the continuous volume structure of both composite components. While manufacturing of metal-ceramic IPC via existing casting and infiltration processes leads to structural deficits, semi-solid forming represents a promising technology for producing IPC components without such defects. Thereby, a solid open pore body made of ceramic is infiltrated with a metallic material in the semi-solid state. Good structural characteristics of the microstructure as the integrity of the open-pore bodies after infiltration and an almost none residual porosity within the composites have already been proven for this manufacturing route within a certain process window. On this basis, the following paper focuses on the mechanical properties such as bending strength of metal-ceramic IPC produced by using semi-solid forming technology. Thereby, the impact of the significant process parameters on these properties is analysed within a suitable process window. Furthermore, a fractographic analysis is carried out by observing and interpreting the fracture behaviour during these tests and the fracture surface thereafter.


2001 ◽  
Author(s):  
Abhay A. Watwe ◽  
Ravi S. Prasher

Abstract Traditional methods of estimating package thermal performance employ numerical modeling using commercially available finite-volume or finite-element tools. Use of these tools requires training and experience in thermal modeling. This methodology restricts the ability of die designers to quickly evaluate the thermal impact of their die architecture due to the added throughput time required to enlist the services of a thermal analyst. This paper describes the development of an easy to use spreadsheet tool, which performs quick-turn numerical evaluations of the impact of non-uniform die heating. The tool employs well-established finite-volume numerical techniques to solve the steady-state, three-dimensional Fourier equation of conduction in the package geometry. Minimal input data is required and the inputs are customized using visual basic pull-down menus to assist die designers who may not be thermal experts. Data showing comparison of the estimates from the spreadsheet tool with that obtained from a conventional analysis using the commercially available finite element code ANSYS™ is also presented.


Sign in / Sign up

Export Citation Format

Share Document