Development and Testing of Bridle Line Power Generation for Aquaculture

2021 ◽  
Author(s):  
Patrick Grehan ◽  
Conor Casey ◽  
Paul McEvoy ◽  
Annicka Wann

Abstract This paper presents the development and testing of Gator, a hydraulic Power Take Off (PTO) being commercialised for the Aquaculture market. Gator uses a novel polymer bellows to pump pressurised water through a power take off system, while also providing a non-linear force response that reduces mooring line loads over traditional mooring lines. The Gator system is comprised of 4 distinct subsystems: The Gator pump, hydraulics, turbine, and electrical storage & control. The Gator pump is a polymer component that compresses under load, pumping water through check valves into the hydraulic system. The connected hydraulic system takes the pressurised water, regulates the pressure and flow rates with an accumulator, and provides a steady flow of water to the turbine, generating electricity. This paper will provide an overview of the technical development of the Gator system over several phases, which has focussed its adaptation for use in the aquaculture industry as an inline pump on cage mooring lines. A description of comprehensive testing undertaken on a linear test rig to simulate the variable loading that the system would experience in operation will be provided as well as some of the early characterisation results from this testing.

2021 ◽  
Author(s):  
Willemijn Pauw ◽  
Remco Hageman ◽  
Joris van den Berg ◽  
Pieter Aalberts ◽  
Hironori Yamaji ◽  
...  

Abstract Integrity of mooring system is of high importance in the offshore industry. In-service assessment of loads in the mooring lines is however very challenging. Direct monitoring of mooring line loads through load cells or inclinometers requires subsea installation work and continuous data transmission. Other solutions based on GPS and motion monitoring have been presented as solutions to overcome these limitations [1]. Monitoring solutions based on GPS and motion data provide good practical benefits, because monitoring can be conducted from accessible area. The procedure relies on accurate numerical models to model the relation between global motions and response of the mooring system. In this paper, validation of this monitoring approach for a single unit will be presented. The unit under consideration is a turret-moored unit operating in Australia. In-service measurements of motions, GPS and line tensions are available. A numerical time-domain model of the mooring system was created. This model was used to simulate mooring line tensions due to measured FPSO motions. Using the measured unit response avoids the uncertainty resulting from a prediction of the hydrodynamic response. Measurements from load cells in various mooring lines are available. These measurements were compared against the results obtained from the simulations for validation of the approach. Three different periods, comprising a total of five weeks of data, were examined in more detail. Two periods are mild weather conditions with different dominant wave directions. The third period features heavy weather conditions. In this paper, the data set and numerical model are presented. A comparison between the measured and numerically calculated mooring line forces will be presented. Differences between the calculated and measured forces are examined. This validation study has shown that in-service monitoring of mooring line loads through GPS and motion data provides a new opportunity for mooring integrity assessment with reduced monitoring system complexity.


2005 ◽  
Vol 127 (4) ◽  
pp. 315-321 ◽  
Author(s):  
Subrata K. Chakrabarti ◽  
Mark McBride

A new suspension bridge is being built over the Tacoma Narrows, Washington. The bridge will be placed on a structure mounted on two large concrete caissons. The caissons are being constructed in a floating position by pouring concrete at site. During this construction period, the floating caissons are moored in place and will be subject to high currents in the Narrows at a range of drafts. In order to investigate the motions of the caisson and the mooring line loads, physical model tests were performed at a scale of 1:100 at HR Wallingford (HRW). The actual bottom contours of the Narrows near the construction site were duplicated in the model. The catenary mooring lines were highly nonlinear. The current forces and moments on the floating caisson included steady and oscillating components due to flow separation and vortex shedding. There is an existing bridge mounted on two piers in the vicinity of the new caissons, which introduced an appreciable flow interference effect. The tests were conducted in both the ebb and flood flow directions so that the effect of the shadowing of the caisson-pier pair could be studied in the tests. The recorded results of the elastic mooring tests were compared in terms of the maximum measured tensions with a time-domain dynamic motion simulation program, MOTSIM. The results of this comparison are presented in this paper.


Author(s):  
J. L. Cozijn ◽  
T. H. J. Bunnik

The effect of the mooring loads on floator motions can be significant for small water plane are floaters like CALM buoys. Not only does the mooring system contribute to the static restoring force components, but the dynamic behaviour of the mooring lines also affects the inertia and damping of the moored CALM buoy. The results from model tests with a moored CALM buoy were compared with the results from two series of time-domain computer simulations. First, fully dynamic coupled simulations were carried out, in which the interaction between the floater motions and the dynamic mooring line loads was modelled for all 6 modes of motion. Second, quasi-static simulations were carried out, in which only the (non-linear) static restoring force characteristics of the mooring system were taken into account. The comparison of results from the simulations and the model tests clearly indicates that the fully dynamic coupled simulations show a much better correspondence with the model test results than the quasi-static simulations. It is concluded that for the simulation of the behavior of a moored CALM buoy in waves a fully dynamic coupled mooring analysis is essential.


Author(s):  
Subrata K. Chakrabarti ◽  
Mark McBride

A new suspension bridge is being built over the Tacoma Narrows, Washington. The bridge will be placed on a structure mounted on two large concrete caissons. The caissons are being constructed in a floating position by pouring concrete at site. During this construction period, the floating caissons are moored in place and will be subject to high currents in the Narrows at a range of drafts. In order to investigate the motions of the caisson and the mooring line loads, physical model tests were performed at a scale of 1:100 at HR Wallingford (HRW). The actual bottom contours of the Narrows near the construction site was duplicated in the model. The catenary mooring lines were highly nonlinear. The current forces and moments on the floating caisson included steady and oscillating components due to flow separation and vortex shedding. There is an existing bridge mounted on two piers in the vicinity of the new caissons, which introduced an appreciable flow interference effect. The tests were conducted in both the ebb and flood flow directions so that the effect of the shadowing of the caisson-pier pair could be studied in the tests. The recorded results of the elastic mooring tests were compared in terms of the maximum measured tensions with a time-domain dynamic motion simulation program, MOTSIM. The results of this comparison are presented in this paper.


Author(s):  
Adam A. Turner ◽  
Dean M. Steinke ◽  
Ryan S. Nicoll ◽  
Patrik Stenmark

Finfish aquaculture has been expanding in areas like Norway and Canada over the last 20 years, and is projected to expand further in the next decades as the planet’s population and demand for seafood increases. Finding appropriate salmon farm sites is becoming increasingly difficult, as there are fewer protected nearshore locations available for development. As a result, there is interest in increased utilization of existing leases (i.e. permitted sites). These leases have a boundary in which the anchors and mooring lines must be contained. Reducing the footprint of the mooring arrangement will allow for an increased utilization of existing leases. A possible method to reduce the footprint of a spread moored salmon farm is to use a taut mooring rather than a chain catenary mooring. This requires the use of mooring materials and components that allows for handling of tidal elevation changes and wave action. This paper investigates the performance of a taut moored configuration with integrated Seaflex elastomeric mooring components in comparison with a conventional chain catenary configuration using dynamic analysis. The results show that a reduced footprint taut mooring configuration with integrated elastomeric mooring components can be substituted for a typical chain catenary mooring with no significant increase in peak mooring line loads at extreme sea states and significant reduction in peak loading at moderate and calm seastates.


2021 ◽  
Vol 9 (2) ◽  
pp. 103
Author(s):  
Dongsheng Qiao ◽  
Binbin Li ◽  
Jun Yan ◽  
Yu Qin ◽  
Haizhi Liang ◽  
...  

During the long-term service condition, the mooring line of the deep-water floating platform may fail due to various reasons, such as overloading caused by an accidental condition or performance deterioration. Therefore, the safety performance under the transient responses process should be evaluated in advance, during the design phase. A series of time-domain numerical simulations for evaluating the performance changes of a Floating Production Storage and Offloading (FPSO) with different broken modes of mooring lines was carried out. The broken conditions include the single mooring line or two mooring lines failure under ipsilateral, opposite, and adjacent sides. The resulting transient and following steady-state responses of the vessel and the mooring line tensions were analyzed, and the corresponding influence mechanism was investigated. The accidental failure of a single or two mooring lines changes the watch circle of the vessel and the tension redistribution of the remaining mooring lines. The results indicated that the failure of mooring lines mainly influences the responses of sway, surge, and yaw, and the change rule is closely related to the stiffness and symmetry of the mooring system. The simulation results could give a profound understanding of the transient-effects influence process of mooring line failure, and the suggestions are given to account for the transient effects in the design of the mooring system.


Author(s):  
Daniele Dessi ◽  
Sara Siniscalchi Minna

A combined numerical/theoretical investigation of a moored floating structure response to incoming waves is presented. The floating structure consists of three bodies, equipped with fenders, joined by elastic cables. The system is also moored to the seabed with eight mooring lines. This corresponds to an actual configuration of a floating structure used as a multipurpose platform for hosting wind-turbines, aquaculture farms or wave-energy converters. The dynamic wave response is investigated with numerical simulations in regular and irregular waves, showing a good agreement with experiments in terms of time histories of pitch, heave and surge motions as well as of the mooring line forces. To highlight the dynamical behavior of this complex configuration, the proper orthogonal decomposition is used for extracting the principal modes by which the moored structure oscillates in waves giving further insights about the way waves excites the structure.


Author(s):  
Niels Hørbye Christiansen ◽  
Per Erlend Torbergsen Voie ◽  
Jan Høgsberg ◽  
Nils Sødahl

Dynamic analyses of slender marine structures are computationally expensive. Recently it has been shown how a hybrid method which combines FEM models and artificial neural networks (ANN) can be used to reduce the computation time spend on the time domain simulations associated with fatigue analysis of mooring lines by two orders of magnitude. The present study shows how an ANN trained to perform nonlinear dynamic response simulation can be optimized using a method known as optimal brain damage (OBD) and thereby be used to rank the importance of all analysis input. Both the training and the optimization of the ANN are based on one short time domain simulation sequence generated by a FEM model of the structure. This means that it is possible to evaluate the importance of input parameters based on this single simulation only. The method is tested on a numerical model of mooring lines on a floating off-shore installation. It is shown that it is possible to estimate the cost of ignoring one or more input variables in an analysis.


1975 ◽  
Vol 97 (3) ◽  
pp. 1046-1052 ◽  
Author(s):  
Robert C. Rupe ◽  
Robert W. Thresher

A lumped mass numerical model was developed which predicts the dynamic response of an inextensible mooring line during anchor-last deployment. The mooring line was modeled as a series of concentrated masses connected by massless inextensible links. A set of angles was used for displacement coordinates, and Lagrange’s Method was used to derive the equations of motion. The resulting formulation exhibited inertia coupling, which, for the predictor-corrector integration scheme used, required the solution of a set of linear simultaneous equations to determine the acceleration of each lumped mass. For the selected cases studied the results show that the maximum tension in the cable during deployment will not exceed twice the weight of the cable and anchor in water.


Author(s):  
Shuangxi Guo ◽  
Yilun Li ◽  
Min Li ◽  
Weimin Chen ◽  
Yiqin Fu

Recently, wind turbine has been developed from onshore area to offshore area because of more powerful available wind energy in ocean area and more distant and less harmful noise coming from turbine. As it is approaching toward deeper water depth, the dynamic response of the large floating wind turbine experiencing various environmental loads becomes more challenge. For examples, as the structural size gets larger, the dynamic interaction between the flexible bodies such as blades, tower and catenary mooring-lines become more profound, and the dynamic behaviors such as structural inertia and hydrodynamic force of the mooring-line get more obvious. In this paper, the dynamic response of a 5MW floating wind turbine undergoing different ocean waves is examined by our FEM approach in which the dynamic behaviors of the catenary mooring-line are involved and the integrated system including flexible multi-bodies such as blades, tower, spar platform and catenaries can be considered. Firstly, the nonlinear dynamic model of the integrated wind turbine is developed. Different from the traditional static restoring force, the dynamic restoring force is analyzed based on our 3d curved flexible beam approach where the structural curvature changes with its spatial position and the time in terms of vector equations. And, the modified finite element simulation is used to model a flexible and moving catenary of which the hydrodynamic load depending on the mooring-line’s motion is considered. Then, the nonlinear dynamic governing equations is numerically solved by using Newmark-Beta method. Based on our numerical simulations, the influences of the dynamic behaviors of the catenary mooring-line on its restoring performance are presented. The dynamic responses of the floating wind turbine, e.g. the displacement of the spar and top tower and the dynamic tension of the catenary, undergoing various ocean waves, are examined. The dynamic coupling between different spar motions, i.e. surge and pitch, are discussed too. Our numerical results show: the dynamic behaviors of mooring-line may significantly increase the top tension, particularly, the peak-trough tension gap of snap tension may be more than 9 times larger than the quasi-static result. When the wave frequency is much higher than the system, the dynamic effects of the mooring system will accelerate the decay of transient items of the dynamic response; when the wave frequency and the system frequency are close to each other, the displacement of the spar significantly reduces by around 26%. Under regular wave condition, the coupling between the surge and pitch motions are not obvious; but under extreme condition, pitch motion may get about 20% smaller than that without consideration of the coupling between the surge and pitch motions.


Sign in / Sign up

Export Citation Format

Share Document