Investigation of Two-Equation Turbulence Models Applied to a Confined Axis-Symmetric Swirling Flow

Author(s):  
Ulf Engdar ◽  
Jens Klingmann

The modeling of industrial combustion applications today is almost exclusively based on two-equation turbulence models. Despite its known limitations, the most the widely used model is still the standard k-ε model. The objective of this paper is to investigate the performance of two-equation turbulence models applied to a confined swirling flow. Numerical modeling of an axis-symmetric confined sudden expansion, followed by a contraction with the assumption of steady flow and an incompressible fluid, has been conducted. The flow field is what can be expected in simplified dump gas turbine combustor geometry. In this investigation, three different swirl cases were considered: no swirl, moderate swirl (no central re-circulation zone) and strong swirl (a central re-circulation zone occurring). The models investigated were: the standard k-ε model, a curvature-modified k-ε model, Chen’s k-ε model, a cubic non-linear k-ε model, the standard k-ω model and the Shear Stress Transport (SST) k-ω) model. The results show that almost all models were able to predict the major impact of the moderate swirl: reduced outer re-circulation lengths and retardation of the axial velocity on the center-line. However, the Chen k-ε model and the SST k-ω) model were found to better reproduce the mean velocity field and the turbulent kinetic energy field from the measurements. For a strong swirl, a large re-circulation zone is formed along the center-line, which the standard k-ε model and the modified k-ε model fail to predict. However, the shape and size of the re-circulation zone differ strongly between the models. At this swirl number, the performances of all models were, without exception, worse than for the lower swirl numbers. The SST k-ω model achieved the best agreement between computations and experimental data.

Author(s):  
Shinji Honami ◽  
Wataru Tsuboi ◽  
Takaaki Shizawa

This paper presents the effect of flame dome depth on the total pressure performance and flow behavior in a sudden expansion region of the combustor diffuser without flow entering the dome head. The mean velocity and turbulent Reynolds stress profiles in the sudden expansion region were measured by a Laser Doppler Velocitmetry (LDV) system. The experiments show that total pressure loss is increased, when flame dome depth is increased. Installation of an inclined combuster wall in the sudden expansion region is suggested from the viewpoint of a control of the reattaching flow. The inclined combustor wall is found to be effective in improvement of the diffuser performance. Better characteristics of the flow rate distribution into the branched channels are obtained in the inclined wall configuration, even if the distorted velocity profile is provided at the diffuser inlet.


2019 ◽  
Vol 128 ◽  
pp. 05002
Author(s):  
Ali Cemal Benim ◽  
Michael Diederich ◽  
Ali Nahavandi

The present paper presents a detailed computational analysis of flow and dispersion in a generic isolated single–zone buildings. First, a grid generation strategy is discussed, that is inspired by a previous computational analysis and a grid independence study. Different turbulence models are appliedincluding two-equation turbulence models, the differential Reynolds Stress Model, Detached Eddy Simulation and Zonal Large Eddy Simulation. The mean velocity and concentration fields are calculated and compared with the measurements. A satisfactory agreement with the experiments is not observed by any of the modelling approaches, indicating the highly demanding flow and turbulence structure of the problem.


Author(s):  
Ayesha Almheiri ◽  
Lyes Khezzar ◽  
Mohamed Alshehhi ◽  
Saqib Salam ◽  
Afshin Goharzadeh

Abstract Stereo-PIV is used to map turbulent strongly swirling flow inside a pipe connected to a closed recirculating system with a transparent test section of 0.6 m in length and a pipe diameter of 0.041 m. The Perspex pipe was immersed inside a water trough to reduce the effects of refraction. The working fluid was water and the Reynolds number based on the bulk average velocity inside the pipe and pipe diameter was equal to 14,450. The turbulent flow proceeds in the downstream direction and interacts with a circular disk. The measurements include instantaneous velocity vector fields and radial profiles of the mean axial, radial and tangential components of the velocity in the regions between the swirler exit and circular disk and around this later. The results for mean axial velocity show a symmetric behavior with a minimum reverse flow velocity along the centerline. As the flow developed along the pipe’s length, the intensity of the reversed flow was reduced and the intensity of the swirl decays. The mean tangential velocity exhibits a Rankine-vortex distribution and reached its maximum around half of the pipe’s radius. As the flow approaches the disk, the flow reaches stagnation and a complex flow pattern of vortices is formed. The PIV results are contrasted with LDV measurements of mean axial and tangential velocity. Good agreement is shown over the mean velocity profiles.


2015 ◽  
Vol 741 ◽  
pp. 475-480
Author(s):  
Na Gao ◽  
Chen Pu ◽  
Bao Chen

2nd order implicit format is implemented in the Navier-Stokes code to deal with instantaneous item unsteady flows. Three simulations are made to testify the method on flow control. First, the external flow fields of synthetic jets are simulated, the mean velocity on the center line, the jet width and velocity distribution are compared well with experimental results. Secondly, the flow fields of synthetic jet in a crossflow are simulated, orifice slot, the mean velocity on the center line and velocity distribution are compared well with experimental results. Finally, the flow control experiments on separation of airfoil are simulated, control methods include steady suction and synthetic jets. Both methods show their ability to favorably effect the flow separation, shortening the length of separation bubble and improving the pressure levels in separation areas in different degrees.


Author(s):  
A. C. Benim ◽  
S. Iqbal ◽  
A. Nahavandi ◽  
W. Meier ◽  
A. Wiedermann ◽  
...  

Isothermal turbulent swirling flow in a model combustor is computationally and experimentally investigated. The main purpose was the validation of turbulence models for this flow type. The experiments were carried out at the German Aerospace Centre (DLR), Stuttgart. For the modeling, the validation of the LES approach, applying the Smagorinsky subgrid-scale model, using wall-functions, takes a central role in the present study. URANS calculations based on SST and RSM were also performed. An analysis for LES showed that a sufficient resolution is indeed obtained for grid index values proposed in the literature. It was also observed that coarser grids can still deliver useful results. LES results were observed to be quite accurate, except the swirl velocity in the outer parts of the jet, which was under-predicted. URANS results were not that good, whereas the RSM performed better than the SST, especially in predicting the swirl velocity in the outer parts. An investigation performed on different domain sizes indicated that the outlet boundary formulation has some influence on the prediction of the upstream flow. The influence of the differencing scheme on LES was also investigated.


1977 ◽  
Vol 99 (3) ◽  
pp. 556-560 ◽  
Author(s):  
E. M. Sparrow ◽  
C. E. Anderson

Consideration is given to the developing laminar flow in a parallel plate channel, with the fluid being drawn from a large upstream space. The flow fields upstream and downstream of the channel inlet were solved simultaneously. A finite-difference technique was employed which was facilitated by a coordinate transformation that telescoped the broadly extended flow domain into a more compact size. For the solutions, the Reynolds number was assigned values from 1 to 1000, covering the range from viscous-dominated flows to those where both viscous and inertia effects are relevant. Streamline maps indicate that whereas a low Reynolds number flow glides smoothly into the channel, a high Reynolds number flow has to turn sharply to enter the channel, with the result that the sharply turning fluid tends to overshoot at first and then readjust. A significant amount of upstream predevelopment occurs at low and intermediate Reynolds numbers. Thus, for example, at Re = 1 and 100, the center-line velocities at inlet are, respectively, 1.37 and 1.13 times the mean velocity (the fully developed center-line velocity is 1.5 times the mean). The upstream pressure drop, measured in terms of the velocity head, is substantially increased by viscous effects at low and intermediate Reynolds numbers.


2001 ◽  
Vol 123 (2) ◽  
pp. 401-406 ◽  
Author(s):  
Elgin A. Anderson ◽  
Robert E. Spall

The flowfield of dual, parallel planar turbulent jets is investigated experimentally using an x-type hot-wire probe and numerically by solving the Reynolds-averaged Navier-Stokes equations. The performance of both differential Reynolds stress (RSM) and standard k-ε turbulence models is evaluated. Results show that the numerical models predict the merge and combined point characteristics to good accuracy. However, both turbulence models show a narrower width of the jet envelope than measured by experiment. The predicted profiles of the mean velocity along the symmetry plane agree well with the experimental results.


2006 ◽  
Vol 128 (5) ◽  
pp. 1090-1100 ◽  
Author(s):  
Charlotte Barbier ◽  
Joseph A. C. Humphrey ◽  
Eric Maslen

Instantaneous circumferential and radial velocity components of the air flowing past a symmetrical pair of suspension/slider-units (SSUs) attached to an E-Block/arm were measured in a specially designed corotating disk apparatus simulating a hard disk drive (HDD) using the particle image velocimetry technique. The geometrical dimensions of the components in the apparatus test section were scaled up by a factor of two, approximately, relative to those of a nominal 312 inch HDD. Most of the measurements were obtained on the interdisk midplane for two angular orientations of the arm/SSUs: (a) One with the tip of the SSUs near the hub supporting the disks; (b) another with the tip of the SSUs near the rims of the disks. Data obtained for disk rotational speeds ranging from 250 to 3000rpm (corresponding to 1250 to 15,000rpm, approximately, in a 312 inch HDD) were post-processed to yield mean and rms values of the two velocity components and of the associated shear stress, the mean axial vorticity, and the turbulence intensity (based on the two velocity components). At the locations investigated near the arm/SSUs, and for disk rotational speeds larger than 1500rpm, the mean velocity components are found to be asymptotically independent of disk speed of rotation but their rms values appear to still be changing. At two locations 90 and 29deg, respectively, upstream of the arm/SSUs, the flow approaching this obstruction displays features that can be attributed to the three-dimensional wake generated by the obstruction. Also, between these two locations and depending on the angular orientation of the arm/SSUs, the effect of the obstruction is to induce a three-dimensional region of flow reversal adjacent to the hub. Notwithstanding, the characteristics of the flow immediately upstream and downstream of the arm/SSUs appear to be determined by local flow-structure interactions. Aside from their intrinsic fundamental value, the data serve to guide and test the development of turbulence models and numerical calculation procedures for predicting this complex class of confined rotating flows, and to inform the improved design of HDDs.


Author(s):  
K. M. Britchford ◽  
J. F. Carrotte ◽  
S. J. Stevens ◽  
J. J. McGuirk

This paper describes an investigation of the mean and fluctuating flow field within an annular S-shaped duct which is representative of that used to connect the compressor spools of aircraft gas turbine engines. Data was obtained from a fully annular test facility using a 3-component Laser Doppler Anemometry (LDA) system. The measurements indicate that development of the flow within the duct is complex and significantly influenced by the combined effects of streamwise pressure gradients and flow curvature. In addition CFD predictions of the flow, using both the k-ε and Reynolds stress transport equation turbulence models, are compared with the experimental data. Whereas curvature effects are not described properly by the k-ε model, such effects are captured more accurately by the Reynolds stress model leading to a better prediction of the Reynolds shear stress distribution. This, in turn, leads to a more accurate prediction of the mean velocity profiles, as reflected by the boundary layer shape parameters, particularly in the critical regions of the duct where flow separation is most likely to occur.


2021 ◽  
Author(s):  
Anup Zope ◽  
Avery Schemmel ◽  
Xiao Wang ◽  
Shanti Bhushan ◽  
Prashant Singh ◽  
...  

Abstract In this study, we have assessed performance of URANS model, various hybrid RANS/LES turbulence models such as detached eddy simulation, Nichols-Nelson HRLES model, dynamic HRLES (DHRL) model, as well as LES for two classes of problems: (a) heat transfer due to subsonic swirling flow subjected to a sudden expansion leading to cylindrical chamber, and (b) flow separation due to oblique shock wave-turbulent boundary layer interaction (STBLI). The results are assessed using the heat transfer characteristics, separation and reattachment characteristics, and capability to predict flow unsteadiness. The study indicates that URANS can predict large scale flow features reasonably well. However, it fails to resolve turbulence. PANS improves TKE prediction, hence, improves heat transfer prediction. Among the hybrid RANS/LES models, DHRL coupled with ILES is capable of providing accurate prediction of flow separation/reattachment characteristics for boundary layer flows. For free-shear dominated flows, implicit LES performs better compared to the explicit LES models.


Sign in / Sign up

Export Citation Format

Share Document