Experimental Design and Data Collection for Dynamic Fragmentation Experiments

Author(s):  
Joseph Weiderhold ◽  
David E. Lambert ◽  
Michael Hopson

Experiments have been conducted to investigate the fracture and fragmentation characteristics of a liquid phased sintered (LPS) tungsten and high strength steel alloys. Metal cylinders, each of which was 20.32 cm tall and 5.08 cm inner/5.88 cm outer diameter, were explosively driven to failure. Two complimentary types of experiments were conducted in this series to determine input parameters for a related continuum mechanics based modeling effort. Open air experiments utilized ultra-high speed framing photography and a photonic Doppler velocimetry system (PDV). The information from these experiments provided a case wall velocity, relative time of breakup and strain-rate during the stress loading timeframe. Complimentary experiments were conducted in a water tank to perform a soft recovery of the fragments. The fragments were subsequently cleaned, massed, and characterized according to their mass and failure strain distributions. Various methods of analyzing the data (Mott & Weibull distributions) are discussed along with the calibration of the continuum damage model parameters. Results of the failure strain analysis, fragment distribution, and damage model are then supplied for use in subsequent modeling and application designs. Further details of the modeling and simulation approach are outlined in a complimentary set of two papers presented by Lambert [1] and Hopson [2].

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Huang-bin Lin ◽  
Shou-gao Tang ◽  
Cheng Lan

A new method of characterizing the damage of high strength concrete structures is presented, which is based on the deformation energy double parameters damage model and incorporates both of the main forms of damage by earthquakes: first time damage beyond destruction and energy consumption. Firstly, test data of high strength reinforced concrete (RC) columns were evaluated. Then, the relationship between stiffness degradation, strength degradation, and ductility performance was obtained. And an expression for damage in terms of model parameters was determined, as well as the critical input data for the restoring force model to be used in analytical damage evaluation. Experimentally, the unloading stiffness was found to be related to the cycle number. Then, a correction for this changing was applied to better describe the unloading phenomenon and compensate for the shortcomings of structure elastic-plastic time history analysis. The above algorithm was embedded into an IDARC program. Finally, a case study of high strength RC multistory frames was presented. Under various seismic wave inputs, the structural damages were predicted. The damage model and correction algorithm of stiffness unloading were proved to be suitable and applicable in engineering design and damage evaluation of a high strength concrete structure.


Metals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 761 ◽  
Author(s):  
Fei Feng ◽  
Jianjun Li ◽  
Peng Yuan ◽  
Qixian Zhang ◽  
Pan Huang ◽  
...  

An increasing demand exists within the automotive industry to utilize aluminum alloy sheets because of their excellent strength-weight ratio and low emissions, which can improve fuel economy and reduce environmental pollution. High-speed automobile impactions are complicated and highly nonlinear deformation processes. Thus, in this paper, a Gurson-Tvergaard-Needleman (GTN) damage model is used to describe the damage behavior of high-speed electromagnetic impaction to predict the fracture behavior of 5052-O aluminum alloy under high-speed impaction. The parameters of the GTN damage model are obtained based on high-speed electromagnetic forming experiments via scanning electron microscopy. The high-speed electromagnetic impaction behavior process is analyzed according to the obtained GTN model parameters. The shape of the high-speed electromagnetic impaction in the numerical simulations agrees with the experimental results. The analysis of the plastic strain and void volume fraction distributions are analyzed during the process of high-speed impact, which indicates the validity of using the GTN damage model to describe or predict the fracture behavior of high-speed electromagnetic impaction.


2011 ◽  
Vol 473 ◽  
pp. 482-489
Author(s):  
Maria Doig ◽  
Karl Roll

Due to increasing demands to reduce C02-emission and to augment occupant’s safety new modern materials are developed ongoing. Because of relatively low production costs, high strength and simultaneously good formability the advanced high strength steels (AHSS) are applied among others for the lightweight design of body-in-white components in the automotive industry. Their already mentioned properties follow from the presence of mixed mild and hard ferrous phases. Due to this multiphase microstructure of the most AHSS steels, a complex material and damage behavior is observed during forming. The damage grows in a ductile manner during plastic flow and the cracks appear without necking. They are often characterized as the so called shear cracks. The damage predictions with standard methods like the forming limit curve (FLC) lack accuracy and reliability. These methods are based on the measurement of linear strain paths. On the other hand ductile damage models are generally used in the bulk forming and crash analysis. The goal is to prove if these models can be applied for the damage prediction in sheet metal forming and which troubles have to be overcome. This paper demonstrates the capability of the Gurson-Tvergaard-Needleman (GTN) model within commercial codes to treat industrial applications. The GTN damage model describes the existence of voids and they evolution (nucleation, growth and coalescence). After a short introduction of the model the finite element aspects of the simulative damage prediction have been investigated. Finally, the determination of the damage model parameters is discussed for a test part.


2015 ◽  
Vol 639 ◽  
pp. 427-434 ◽  
Author(s):  
Kerim Isik ◽  
Maria Doig ◽  
Helmut Richter ◽  
Till Clausmeyer ◽  
A. Erman Tekkaya

Advanced high strength steels are still one of the best alternatives for light weight design in the automotive industry. Due to their good performances like high strength and high energy absorption, those steel grades are excellent for body in white components. Because of their restricted ductility, which sometimes leads to the formation of cracks without or low necking during forming operations, conventional forming limit diagrams may fall short. As a remedy, an enhanced variant of the Lemaitre continuum mechanical damage model (CDM) is presented in this work.Previous model extensions of the Lemaitre model improved the damage prediction for the shear and compression dominated stress states by introducing an additional weighting factor for the influence of compression on damage evolution, the so called crack closure parameter h. However, the possible range of the fracture behavior predicted by such models for low and negative stress triaxialities is limited. In this work, the Lemaitre CDM has been enhanced by considering the maximal shear stress to predict the fracture occurrence under shear. Previous models for the effect of void closure on damage evolution are reviewed and a novel model enhancement taking into account the maximal shear stresses is described. The determination of the damage model parameters is presented for a dual phase steel. For this particular material, the response of model enhancement on the failure prediction is discussed for a test part.


2012 ◽  
Vol 500 ◽  
pp. 569-573
Author(s):  
Xian Li Liu ◽  
Cai Xu Yue ◽  
Ming Ming Yu ◽  
Jia Yi Zhang ◽  
Ming Yang Wu

Accuracy of cutting simulation model mostly depends on whether its material constitutive equation describes workpiece physical property under cutting state. It is necessary to research on the constitutive properties of cutting material in the high strain state of temperature. In this paper high strength steel GCr15 is used as a research object under the high speed cutting state. By FEM Johnson-cook constitutive model in Hopkinson Experiment is simulated, and the sensitivity of constant on constitutive model is also analyzed. Also influence of temperature on workpiece material stress and strain is revealed. The result provides reference for Johnson-cook model parameters of high strength steel GCr15, and it provides theory basis of material properties analysis in cutting state as well.


Alloy Digest ◽  
1965 ◽  
Vol 14 (2) ◽  

Abstract Cyclops BHT is a low-alloy martensitic high-speed steel of the molybdenum type recommended for high strength, high load structural components designed for elevated temperature service. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SA-173. Producer or source: Cyclops Corporation.


Alloy Digest ◽  
1974 ◽  
Vol 23 (11) ◽  

Abstract VASCO M-50 is a hardenable (martensitic), low-alloy high-speed steel developed primarily for high-strength, high-load components (such as bearings and gears) designed for elevated-temperature service. It may be used at temperatures up to 600 F; this is in contrast to AISI 52100 steel which may be used up to only 350 F. This datasheet provides information on composition, physical properties, hardness, and elasticity. It also includes information on forming, heat treating, machining, joining, and surface treatment. Filing Code: TS-278. Producer or source: Teledyne Vasco.


2020 ◽  
Vol 15 ◽  
Author(s):  
Fei Sun ◽  
Guohe Li ◽  
Qi Zhang ◽  
Meng Liu

: Cr12MoV hardened steel is widely used in the manufacturing of stamping die because of its high strength, high hardness, and good wear resistance. As a kind of mainstream cutting technology, high-speed machining has been applied in the machining of Cr12MoV hardened steel. Based on the review of a large number of literature, the development of high-speed machining of Cr12MoV hardened steel was summarized, including the research status of the saw-tooth chip, cutting force, cutting temperature, tool wear, machined surface quality, and parameters optimization. The problems that exist in the current research were discussed and the directions of future research were pointed out. It can promote the development of high-speed machining of Cr12MoV hardened steel.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1548
Author(s):  
Jiuling Hu ◽  
Lianjin Hong ◽  
Lili Yin ◽  
Yu Lan ◽  
Hao Sun ◽  
...  

At present, high-speed underwater acoustic communication requires underwater transducers with the characteristics of low frequency and broadband. The low-frequency transducers also are expected to be low-frequency directional for realization of point-to-point communication. In order to achieve the above targets, this paper proposes a new type of flextensional transducer which is constructed of double mosaic piezoelectric ceramic rings and spherical cap metal shells. The transducer realizes broadband transmission by means of the coupling between radial vibration of the piezoelectric rings and high-order flexural vibration of the spherical cap metal shells. The low-frequency directional transmission of the transducer is realized by using excitation signals with different amplitude and phase on two mosaic piezoelectric rings. The relationship between transmitting voltage response (TVR), resonance frequency and structural parameters of the transducer is analyzed by finite element software COMSOL. The broadband performance of the transducer is also optimized. On this basis, the low-frequency directivity of the transducer is further analyzed and the ratio of the excitation signals of the two piezoelectric rings is obtained. Finally, a prototype of the broadband ring flextensional underwater transducer is fabricated according to the results of simulation. The electroacoustic performance of the transducer is tested in an anechoic water tank. Experimental results show that the maximum TVR of the transducer is 147.2 dB and the operation bandwidth is 1.5–4 kHz, which means that the transducer has good low-frequency, broadband transmission capability. Meanwhile, cardioid directivity is obtained at 1.4 kHz and low-frequency directivity is realized.


2009 ◽  
Vol 65 ◽  
pp. 19-31
Author(s):  
Ruben Cuamatzi-Melendez ◽  
J.R. Yates

Little work has been published concerning the transferability of Gurson’s ductile damage model parameters in specimens tested at different strain rates and in the rolling direction of a Grade A ship plate steel. In order to investigate the transferability of the damage model parameters of Gurson’s model, tensile specimens with different constraint level and impact Charpy specimens were simulated to investigate the effect of the strain rate on the damage model parameters of Gurson model. The simulations were performed with the finite element program ABAQUS Explicit [1]. ABAQUS Explicit is ideally suited for the solution of complex nonlinear dynamic and quasi–static problems [2], especially those involving impact and other highly discontinuous events. ABAQUS Explicit supports not only stress–displacement analyses but also fully coupled transient dynamic temperature, displacement, acoustic and coupled acoustic–structural analyses. This makes the program very suitable for modelling fracture initiation and propagation. In ABAQUS Explicit, the element deletion technique is provided, so the damaged or dead elements are removed from the analysis once the failure criterion is locally reached. This simulates crack growth through the microstructure. It was found that the variation of the strain rate affects slightly the value of the damage model parameters of Gurson model.


Sign in / Sign up

Export Citation Format

Share Document