Direct Use of the Fracture Toughness Master Curve in ASME Code, Section XI, Applications

Author(s):  
William Server ◽  
Russ Cipolla

The ASME Code, Section XI, has adopted the indirect use of the fracture toughness Master Curve to define an alternative index (RTT0) rather than RTNDT for using the Code KIC and KIa curves in Appendices A and G. RTT0 is defined as T0 + 19.7°C (T0 + 35°F), where T0 is the Master Curve reference temperature as defined in ASTM Standard Test Method E 1921. This alternative approach was first approved in ASME Code Case N-629 for Section XI and Code Case N-631 for Section III. Most recently this approach has been integrated directly into the Code, Section XI, and will be published in the 2013 Edition. When this alternative indexing approach was developed, it was recognized that the direct use of the Master Curve itself also could be used as an alternative to the Code KIC curve. A Code Case for the direct use of the fracture toughness Master Curve has been developed and has been presented to Section XI for approval. This paper provides the technical basis for using the fracture toughness Master Curve as an alternative to the Section XI KIC curve. An adjustment to the Master Curve at very low temperatures is included which alleviates a potential problem for low temperature overpressure (LTOP) protection setpoints as would be determined using the existing Code KIC curve.

Author(s):  
Mark Kirk ◽  
Steven Xu ◽  
Cheng Lui ◽  
Marjorie Erickson ◽  
Yil Kim ◽  
...  

Within the American Society of Mechanical Engineers (ASME) the Section XI Working Group on Flaw Evaluation (WGFE) is currently working to develop a revision to Code Case (CC) N-830. CC N-830 permits the direct use of fracture toughness in flaw evaluations as an alternative to the indirect/correlative approaches (RTNDT-based) traditionally used in the ASME Code. The current version of N-830 estimates allowable fracture toughness values in the transition regime as the 5th percentile Master Curve (MC) indexed to the transition temperature T0. The proposed CC N-830 revision expands on this capability by incorporating a complete and self-consistent suite of models that describe completely the temperature dependence, scatter, and interdependencies between all fracture metrics (i.e., KJc, KIa, JIc, J0.1, and J–R) used currently, or useful in, a flaw evaluation for conditions ranging from the lower shelf through the upper shelf. Papers presented in previous ASME Pressure Vessel and Piping (PVP) Conferences since 2014 provide the technical basis for these various toughness models. This paper contributes to this overall CC N-830 documentation suite by presenting the results of a sample problem run to assess the proposed revision of the CC. The objective of the sample problem was (1) to determine if the revised CC was written with adequate clarity to permit different engineers to accurately and consistently calculate the various allowable toughness values described by the equations in the CC, (2) to assess how these allowable toughness values would be used to calculate allowable flaw depths using standard ASME SC-XI approaches, and (3) to compare allowable flaw depths calculated using established Code practices (RTNDT-based) to those calculated using proposed CC practices (T0-based). The sample problem demonstrated that (1) the CC was written with sufficient clarity to allow different engineers to arrive at the same estimated value of allowable toughness, (2) the latitude associated with the provisions of the ASME Code pertinent to estimation of allowable flaw depth are responsible for some differences in the allowable flaw depth values reported by different participants, and (3) current Code estimates of allowable flaw depth are far more conservative (that is: smaller) than values estimated by the candidate CC methods based on the MC, this mostly due to the generally-conservative bias of the Code’s RTNDT & KIc approach. The candidate CC methods provide much more consistent conservatism than current Code approaches for all conditions in the operating nuclear reactor fleet via their use of an index temperature (T0) defined by actual fracture toughness data and a temperature dependence defined by those data. The WGFE is continuing to evaluate candidate approaches to estimate allowable toughness values for CC N-830 using a T0-indexed Master Curve. Associated work is addressed by two companion papers presented at this conference.


Author(s):  
Karthik Subramanian ◽  
Andrew J. Duncan

The master curve approach was utilized to compare fracture toughness of American Society for Testing of Materials (ASTM) A285 as developed from Charpy v-notch (CVN) data and predictive statistical models. The master curves for each of the data sets were developed in accordance with American Society for Testing Materials Specification E 1921 (ASTM E1921, “Standard Test Method for Determination of Reference Temperature, T0, for Ferritic Steels in the Transition Range”), as prescribed by American Petroleum Institute Recommended Practice 579 (API-579, “Fitness for Service”). The results indicate that predictive statistical models developed from compact tension test results express a lower fracture toughness distribution when compared to CVN data.


Author(s):  
Kim R. W. Wallin ◽  
Gerhard Nagel ◽  
Elisabeth Keim ◽  
Dieter Siegele

The ASME code cases N-629 and N-631 permits the use of a Master Curve-based index temperature (RTTo ≡ T0 + 19.4°C) as an alternative to traditional RTNDT-based methods of positioning the ASME KIc, and KIR curves. This approach was adopted to enable use of Master Curve technology without requiring the wholesale changes to the structure of the ASME Code that would be needed to use all aspects of Master Curve technology. For the brittle failure analysis considering irradiation embrittlement additionally a procedure to predict the adjustment of fracture toughness for EOL from irradiation surveillance results must be available as by NRC R.G. 1.99 Rev. 2 e.g.: ART = Initial RTNDT + ΔRTNDT + Margin. The conservatism of this procedure when RTNDT is replaced by RTTo is investigated for western nuclear grade pressure vessel steels and their welds. Based on a systematic evaluation of nearly 100 different irradiated material data sets, a simple relation between RTToirr, RTToref and ΔT41JRG is proposed. The relation makes use of the R.G. 1.99 Rev. 2 and enables the minimizing of margins, necessary for conventional correlations based on temperature shifts. As an example, the method is used to assess the RTTo as a function of fluence for several German pressure vessel steels and corresponding welds. It is shown that the method is robust and well suited for codification.


Author(s):  
Marjorie Erickson

Abstract The current best-estimate model describing the fracture toughness of ferritic steels is the Master Curve methodology standardized in ASTM E1921. Shortly following standardization by ASTM, efforts were undertaken to incorporate this best-estimate model into the framework of the ASME Code to reduce the conservatisms resulting from use of a reference temperature based on the nil-ductility temperature (RTNDT) to index the plane strain fracture initiation toughness (KIc). The reference temperature RTT0, which is based on the ASTM E1921-defined T0 value, was introduced in ASME Code Cases N-629 (replaced by Code Case N-851) and N-631 to replace RTNDT for indexing the ASME KIc curve. Efforts are continuing within the ASME Code to implement direct use of the Master Curve model; using the T0 reference temperature to index an elastic-plastic, KJc fracture toughness curve. Transitioning to a direct T0-based fracture toughness assessment methodology requires the availability of T0 estimates for all materials to be assessed. The historical Charpy and NDT-based regulatory approach to characterizing toughness for reactor pressure vessel (RPV) steels results in a lack of T0 values for a large population of the US nuclear fleet. The expense of the fracture toughness testing required to estimate a valid T0 value makes it unlikely that T0 will ever be widely available. Since direct implementation of best-estimate, fracture toughness models in codes and regulatory actions requires an estimate of T0 for all materials of interest it is necessary to develop an alternative means of estimating T0. A project has been undertaken to develop a combined model approach to estimating T0 from data that may include limited elastic-plastic fracture toughness KJc, Charpy, tensile, ductile initiation toughness, arrest toughness, and/or nil-ductility temperature data. Using correlations between these properties and T0 a methodology for combining estimates of T0 from several sources of data was developed. T0 estimates obtained independently from the Master Curve model, the Simple T28J correlation model, and a more complex Charpy correlation model were combined using the Mixture Probability Density Function (PDF) method to provide a single estimate for T0. Using this method, the individual T0 estimates were combined using weighting factors that accounted for sample size and individual model accuracy to optimize the accuracy and precision of the combined T0 estimate. Combining weighted estimates of T0 from several sources of data was found to provide a more refined estimate of T0 than could be obtained from any of the models alone.


1983 ◽  
Vol 105 (1) ◽  
pp. 12-16 ◽  
Author(s):  
N. Urabe ◽  
A. Yoshitake ◽  
T. Iwasaki ◽  
M. Kawahara

Compressive crushing strength on brackish ice and sea ice and fracture toughness value on sea ice were measured as parameters associated with fracture strength of ice. The compressive crushing strength depends on salinity, temperature and strain rate. At constant salinity and temperature, the strength increased with increase in strain rate and reached maximum value at about a strain rate of 10−3 s−1, then decreased with increase in strain rate. An empirical equation to estimate the compressive crushing strength was derived as a function of brine volume, temperature and strain rate. As far as fracture toughness is concerned, a simplified test procedure on notched cantilever beam specimen was developed in order to avoid complicated manipulation in field conditions. The fracture toughness value (KIC) coincided well with the value obtained from fracture toughness tests conducted in conformity with the standard test method.


Author(s):  
Michael Ludwig

In the standard test method for the determination of the reference temperature T0 in the transition range, ASTM E 1921-03 [1], the remark is given that different specimen types could lead to discrepancies in the calculated T0 values. Especially C(T) and SEN(B) specimens indicate by experimental evidence that a 10 °C to 15 °C difference in T0 has been observed. In the course of the European research project VOCALIST [2] a ferritic RPV steel has been investigated by conducting numerous fracture toughness experiments as well as intensive numerical studies. A local approach model based on the Weibull stress has been developed and calibrated for this material [3]. For the calculation of the constraint effect between SEN(B) and C(T) specimens with a crack to ligament ratio of approx. 0.5 the model has been applied to predict the constraint effects on fracture toughness and the resulting theoretical difference in the reference temperature T0. For this purpose the according specimens have been calculated by several finite element models and a reference solution in the small scale yielding space allowed for the calculation of the “constraint free” reference transition temperature T0. By means of theoretical constraint functions derived from the Weibull stress model, the difference for each specimen compared to the reference solution could be calculated. From the results a theoretical difference of ΔT0 = 10°C between SEN(B) (lower value) and C(T) specimens (higher value) caused by the different crack tip constraint has been obtained. This value confirms the experimental observations.


Author(s):  
Marjorie Erickson ◽  
Mark Kirk

The ASME Boiler and Pressure Vessel Code; Section XI provides Rules for inspection and fracture safety assessment of nuclear plant pressure boundary components. This Code provides methods for assessing the stresses and moments contributing to the forces available to drive crack growth in a component as described by stress intensity factors as well as the measures of material resistance to crack extension, measured by fracture toughness. Much of the current Code is based on linear elastic fracture mechanics methodologies developed 40 years ago [1], or more, at a time when drop weight tear tests [2] and Charpy V-notch impact tests [3] were the accepted standards used for characterizing a material’s resistance to brittle fracture. Ensuing research produced experimental methods to directly measure a material’s resistance to both brittle and ductile fracture. Data from such experiments provided the evidence supporting a suite of best estimate models describing fracture toughness behavior across a range of temperatures and strain rates. These models include cleavage crack initiation and crack arrest fracture toughness (KJc and KIa behavior, respectively) on the lower shelf and through transition, and also ductile crack initiation and crack growth resistance (JIc, J0.1, and J–R behavior) on the upper shelf. Best-estimate models provide a more accurate means of assessing a material’s expected behavior under all loading and temperature conditions; they also enable an explicit characterization of uncertainties. For these reasons, there is a growing advocacy within ASME Code groups for incorporating these best estimate toughness models into Sections III and XI of the Boiler and Pressure Vessel Code. The first direct implementation of the KJc best-estimate model in the ASME Code was in Code Case (CC) N-830, which was adopted by the ASME Code in 2014. N-830 states that the 5th percentile lower bound of the KJc Master Curve [4], indexed by T0, can be used as an alternative to the ASME RTNDT-indexed KIc curve in a flaw evaluation performed using Non-Mandatory Appendix A to Section XI. Since that time, work has progressed within the Working Group on Flaw Evaluation (WGFE) to further improve the CC. The proposed Revision 1 of CC N-830 incorporates a complete and self-consistent suite of models that completely describe the temperature dependence, scatter, and interdependencies (such as those resulting from irradiation or other hardening mechanisms) between all fracture toughness metrics (i.e., KJc, KIa, JIc, J0.1, and J–R) from the lower shelf through the upper shelf. By incorporating both a statistical characterization of fracture toughness as well as the ability to estimate a bounding curve at any percentile, the revised CC provides a consistent basis for the conduct of both conventional deterministic flaw evaluations as well as probabilistic evaluations that may be pursued in certain circumstances. Additionally, for the first time within ASME Section XI, both transition and upper shelf toughness properties are provided in a consistent manner in the same document, which provides the analyst an easy means to determine what fracture behavior (i.e., transition or upper shelf) can be expected for a particular set of conditions. The WGFE conducted round-robin assessments of the proposed CC N-830-R1 equations and their use in flaw evaluations, and is supporting documentation of the technical basis supporting the development and implementation of N-830-R1. This paper summarizes that technical basis report. A companion paper presented at this meeting describes the round-robin assessments.


Author(s):  
Hardayal S. Mehta ◽  
Gary L. Stevens ◽  
Daniel V. Sommerville ◽  
Michael Benson ◽  
Mark Kirk ◽  
...  

A previous PVP paper [1] identified suggested improvements to be made to ASME Code, Section XI, Nonmandatory Appendix G, “Fracture Toughness Criteria for Protection Against Failure” [2]. That paper also identified that the current version of Appendix G does not have any provisions for when the calculated operating stress (pseudo stress) exceeds the material yield strength. The treatment of stresses exceeding yield was included in earlier versions of Appendix G, but it was removed via Code Action ISI-94-40 in 1995. The specific reasons for removal of these provisions were not documented. In some Appendix G postulated flaw evaluations for pressure-temperature (P-T) limits, the calculated total linear-elastic (or pseudo) stress (i.e., including the primary stress due to pressure loading and thermal stress) may exceed the material yield stress. The ASME Section XI Working Group on Operating Plant Criteria (WGOPC) decided that this provision needed to be more fully considered, with appropriate benchmarking and possible adjustments to Appendix G made consistent with the current state of knowledge in elastic-plastic fracture mechanics (EPFM) methods. This is appropriate since the state of knowledge in EPFM has significantly advanced since the time the technical basis for Appendix G was established, as documented in Welding Research Council (WRC) Bulletin No. WRC-175, which was published in 1972. Furthermore, EPFM provides an improved method for evaluating the effects of high stresses. This paper describes the results of preliminary investigations of stresses exceeding the material yield stress in fracture toughness assessments associated with Appendix G. Also included in the technical evaluations presented are the temperature conditions for which upper shelf conditions are present and where EPFM methods are applicable.


2013 ◽  
Vol 577-578 ◽  
pp. 149-152
Author(s):  
Masayuki Arai ◽  
Yasuhiro Yamazaki ◽  
Masato Suzuki ◽  
Yukio Miyashita ◽  
H. Waki

Collaborative research has been conducted by the Japan Thermal Spray Society (JTSS) to establish a standard test method for evaluating the interfacial fracture toughness of thermal sprayed coatings, including thermal barrier coatings. The test method is based upon the indentation test method utilizing a conventional Vickers hardness test machine. In this committee, round robin tests were performed to check differences in the evaluated results among collaborators. This paper reports on the progress of such activity in Japan.


Sign in / Sign up

Export Citation Format

Share Document