Fatigue Capacity of Steel Cylindrical Bodies and Conduits Subjected to Cyclic Pressure

Author(s):  
Anders Wormsen ◽  
Finn Kirkemo ◽  
Anthony David Muff

This paper presents a code review (API 17G, ASME VIII Div 2 and ASME VIII Div 3) for addressing the fatigue capacity of steel cylindrical bodies and conduits subjected to cyclic pressure only. The fatigue capacity for pipes with a yield strength of 75ksi and 90ksi and with rated working pressures (RWP) ranging from 5ksi to 30ksi have been considered using both the S-N approach and the fracture mechanic approach. The S-N based fatigue lives from API 17G are found to be much longer than the corresponding S-N based fatigue lives from ASME VIII Div 2 and Div 3 and by the fracture mechanic (FM) approach as required in ASME VIII Div 3 for vessels where a leak-before-break condition can not be demonstrated. The S-N predicted fatigue lives are found to decrease with increasing RWP while the FM based fatigue lives are found to be rather independent of the RWP. The S-N based fatigue lives from ASME VIII Div 2 and Div 3 for free corrosion conditions are found to be shorter than the corresponding FM based fatigue lives for RWPs ≥ 25ksi and ≥ 20ksi, respectively. Based on this work, it is recommended to establish the fatigue capacity of steel cylindrical bodies and conduits subjected to cyclic pressure using either ASME VIII Div 2 or Div 3. The FM approach is considered to give a lower bound fatigue life as the number of cycles to initiate a crack is disregarded. Guidance on when it is considered applicable to use the API 17G criterion is given in the conclusion section of this paper.

Author(s):  
Hongjun Li ◽  
Richard Johnston ◽  
Donald Mackenzie

The effect of autofrettage on the stress level in thick-walled cylinders with a radial cross-bore is investigated by applying inelastic FEA with cyclic pressure loading. A macro is created in ANSYS to calculate the equivalent alternating stress intensity, Seq, based on the ASME Boiler and Pressure Vessel Code. The value of Seq is used to evaluate the fatigue life of the vessel. For a specific cyclic load level, a distinct optimum autofrettage pressure is identified by plotting autofrettage pressure against the number of cycles from design fatigue data. The fatigue life of the autofrettaged vessel with such an optimum pressure is significantly increased compared with the case where no autofrettage is used.


Author(s):  
Theddeus Tochukwu Akano

Normal oral food ingestion processes such as mastication would not have been possible without the teeth. The human teeth are subjected to many cyclic loadings per day. This, in turn, exerts forces on the teeth just like an engineering material undergoing the same cyclic loading. Over a period, there will be the creation of microcracks on the teeth that might not be visible ab initio. The constant formation of these microcracks weakens the teeth structure and foundation that result in its fracture. Therefore, the need to predict the fatigue life for human teeth is essential. In this paper, a continuum damage mechanics (CDM) based model is employed to evaluate the fatigue life of the human teeth. The material characteristic of the teeth is captured within the framework of the elastoplastic model. By applying the damage evolution equivalence, a mathematical formula is developed that describes the fatigue life in terms of the stress amplitude. Existing experimental data served as a guide as to the completeness of the proposed model. Results as a function of age and tubule orientation are presented. The outcomes produced by the current study have substantial agreement with the experimental results when plotted on the same axes. There is a notable difference in the number of cycles to failure as the tubule orientation increases. It is also revealed that the developed model could forecast for any tubule orientation and be adopted for both young and old teeth.


2021 ◽  
Vol 5 (3) ◽  
pp. 76
Author(s):  
Ho Sung Kim ◽  
Saijie Huang

S-N curve characterisation and prediction of remaining fatigue life are studied using polyethylene terephthalate glycol-modified (PETG). A new simple method for finding a data point at the lowest number of cycles for the Kim and Zhang S-N curve model is proposed to avoid the arbitrary choice of loading rate for tensile testing. It was demonstrated that the arbitrary choice of loading rate may likely lead to an erroneous characterisation for the prediction of the remaining fatigue life. The previously proposed theoretical method for predicting the remaining fatigue life of composite materials involving the damage function was verified at a stress ratio of 0.4 for the first time. Both high to low and low to high loadings were conducted for predicting the remaining fatigue lives and a good agreement between predictions and experimental results was found. Fatigue damage consisting of cracks and whitening is described.


Author(s):  
Arianna Stimilli ◽  
Cassie Hintz ◽  
Zhijun Li ◽  
Raul Velasquez ◽  
Hussain U. Bahia

Asphalt binder has the ability to self-heal during rest periods when repetitive loading is applied. Studying the effect of rest on fatigue law parameters provides useful insight into the healing capabilities of asphalt binders. Currently, standard testing and analysis procedures to quantify asphalt binder healing capability are limited and difficult to implement in practice. Fatigue is known to depend on both traffic loading and pavement structure. Power law relations (e.g., Nf = Aγ−B) are commonly used for fatigue analysis of pavement materials. Power laws are used to estimate fatigue life (i.e., number of cycles to failure, Nf) as a function of load amplitude (e.g., strain, γ), which is a reflection of the pavement structure. In this study, testing consisted of strain-controlled time sweeps in the dynamic shear rheometer with a single rest period inserted at a specified damage level. With the selected test, the effect of healing on the relationship between fatigue life and strain was investigated. Nine neat and modified binders were tested. Healing testing was conducted at multiple age levels and strains. Healing that resulted from a single rest period had an insignificant effect on fatigue performance compared with modification and oxidative aging. Although this paper highlights the challenges of using few rest periods to predict healing potential, preliminary results of testing with multiple rest periods show the importance of healing. Further investigation is needed to verify the effect of multiple rest periods on binder fatigue.


2000 ◽  
Vol 123 (1) ◽  
pp. 150-154
Author(s):  
John H. Underwood ◽  
Michael J. Glennon

Laboratory fatigue life results are summarized from several test series of high-strength steel cannon breech closure assemblies pressurized by rapid application of hydraulic oil. The tests were performed to determine safe fatigue lives of high-pressure components at the breech end of the cannon and breech assembly. Careful reanalysis of the fatigue life tests provides data for stress and fatigue life models for breech components, over the following ranges of key parameters: 380–745 MPa cyclic internal pressure; 100–160 mm bore diameter cannon pressure vessels; 1040–1170 MPa yield strength A723 steel; no residual stress, shot peen residual stress, overload residual stress. Modeling of applied and residual stresses at the location of the fatigue failure site is performed by elastic-plastic finite element analysis using ABAQUS and by solid mechanics analysis. Shot peen and overload residual stresses are modeled by superposing typical or calculated residual stress distributions on the applied stresses. Overload residual stresses are obtained directly from the finite element model of the breech, with the breech overload applied to the model in the same way as with actual components. Modeling of the fatigue life of the components is based on the fatigue intensity factor concept of Underwood and Parker, a fracture mechanics description of life that accounts for residual stresses, material yield strength and initial defect size. The fatigue life model describes six test conditions in a stress versus life plot with an R2 correlation of 0.94, and shows significantly lower correlation when known variations in yield strength, stress concentration factor, or residual stress are not included in the model input, thus demonstrating the model sensitivity to these variables.


Author(s):  
Claude Faidy

Based on ASME Boilers and Pressure Vessels Code the major fracture mechanic analysis is limited to protection of class 1 components to brittle fracture. All the Operators of future plants have to enlarge the scope of these analyses to different concepts, at design or operation stage: - brittle and ductile analysis of hypothetical large flaw - leak before break approach - break exclusion concept - incredibility of failure of high integrity components - end of fabrication acceptable defect - in-service inspection performance - acceptable standards in operation - Long Term Operation (LTO) All these requirements needs a procedure, an analysis method with material properties and criteria. After a short overview of each topic, the paper will present how RCC-M, RSE-M French Codes and ASME III and XI take care of all these new modern regulatory requirements.


2009 ◽  
Vol 6 (2) ◽  
pp. 229-237 ◽  
Author(s):  
Zhihe Liang

This paper considers the cycle covering of complete multipartite graphs motivated by the design of survivable WDM networks, where the requests are routed on sub-networks which are protected independently from each other. The problem can be stated as follows: for a given graph G, find a cycle covering of the edge set of K (n) t ? , where V( Kt (n))=V(G), such that each cycle in the covering satisfies the disjoint routing constraint (DRC). Here we consider the case where G=Ctn, a ring of size tn and we want to minimize the number of cycles ? (nt, ?) in the covering. For the problem, we give the lower bound of ? (nt, ?), and obtain the optimal solutions when n is even or n is odd and both ? and t are even.


2022 ◽  
pp. 37-65
Author(s):  
M. Mlikota

This study deals with the numerical estimation of the fatigue life represented in the form of strength-life (S-N, or Wöhler) curves of metals with different crystallographic structures, namely body-centered cubic (BCC) and face-centered cubic (FCC). Their life curves are determined by analyzing the initiation of a short crack under the influence of microstructure and subsequent growth of the long crack, respectively. Micro-models containing microstructures of the materials are set up by using the finite element method (FEM) and are applied in combination with the Tanaka-Mura (TM) equation in order to estimate the number of cycles required for the crack initiation. The long crack growth analysis is conducted using the Paris law. The study shows that the crystallographic structure is not the predominant factor that determines the shape and position of the fatigue life curve in the S-N diagram, but it is rather the material parameter known as the critical resolved shear stress (CRSS). Even though it is an FCC material, the investigated austenitic stainless steel AISI 304 shows an untypically high fatigue limit (208 MPa), which is higher than the fatigue limit of the BCC vanadium-based micro-alloyed forging steel AISI 1141 (152 MPa).


2019 ◽  
Vol 30 (20) ◽  
pp. 3146-3162 ◽  
Author(s):  
Mohammad Reza Mohammadzadeh ◽  
Mahmoud Kadkhodaei ◽  
Mahmoud Barati ◽  
Shabnam Arbab Chirani ◽  
Luc Saint-Sulpice

Fatigue in shape memory alloys is one of the crucial aspects of their behavior; however, the current knowledge is mainly focused on uniaxial fatigue and is inadequate for engineering purposes. In this article, a fatigue criterion based on the stabilized dissipated energy has been presented to investigate the torsional low-cycle fatigue of superelastic shape memory alloys. To this aim, a one-dimensional torsional constitutive model in addition to a modified fully coupled thermomechanical model has been utilized so that the torsional cyclic responses especially in relatively high loading frequencies, which contribute to remarkable temperature variations and consequent response changes, could be taken into account. The calculated stabilized dissipated energy, then, has been used in an energy approach fatigue criterion in order to predict the fatigue life; hence, an explicit relation, which is capable of determining the number of cycles to failure for different loading conditions at a given loading frequency, has been obtained. The numerical results have been appraised for NiTi specimens, and they have been shown to be in a good agreement with the experimental data. Finally, using the proposed approach, the effect of fatigue test parameters on the fatigue life has been studied.


2018 ◽  
Vol 172 ◽  
pp. 03004
Author(s):  
A. Sivasubramanian ◽  
T.S. Kirubasankar ◽  
S. Vinoth kumar

This paper involves the study of fatigue life of coated aluminium alloy Al 7075-T651 that is heat-treated under 100oC soaked in castor oil for three days. The specimen after heat treatment is subjected to fatigue test using rotary bending machine for number of cycles to fail under cyclic load of 15kgf, 25Kgf, and 50kgf.The life of the specimen is found and compared with uncoated specimen and improved life in number of cycle is noticed. The crack propagation and its type is analysed using scanning electron microscope for knowing the point of fracture and its initiation to failure.


Sign in / Sign up

Export Citation Format

Share Document