Development and Application of Risk-Based Inspection in Ethylene Compression Unit

Author(s):  
Jun Si ◽  
Yuqing Yang ◽  
Zhenrong Yan ◽  
Xiaoming Luo

Inspections are widely used in the process industries to reduce risk related to failure on static mechanical equipment. Risk-based inspection is one of effective tools to optimize inspection and maintenance planning. Based on principle of the risk-based inspection methodology, the main failure modes and damage mechanisms of pressure vessels and pipelines in ethylene compression unit are identified. The risk assessment of pressure vessels and pipelines is carried out. All pressure vessels and pipelines in this unit are prioritized based on the level of risk. Risk mitigation measures and optimal inspection and maintenance strategy are proposed. The results of risk evaluation have highlighted a clear improvement in the quality of inspection and maintenance of the ethylene compression unit.

2015 ◽  
Vol 21 (2) ◽  
pp. 227-248 ◽  
Author(s):  
R.M. Chandima Ratnayake

Purpose – The purpose of this paper is to review the evolution of inspection and maintenance (I&M) practices used for aging and newly built oil and gas (O&G) facilities. It also proposes a framework and an approach for mechanizing inspection planning to perform preventive maintenance (PM) activities, taking technical condition (TC) and relative degradation (RD) into consideration. Design/methodology/approach – The paper systematically collects, categorizes, and analyzes the published literature of both researchers and practitioners. It also utilizes industrial experience that has been accrued and utilized from inspection planning practices for static mechanical equipment on aging O&G production plants. Findings – The paper defines significant issues in I&M of O&G assets related to: different philosophies; stakeholders’ requirements trade-off; dependability and asset deterioration challenges; items interacting with inspection planning mechanization processes and I&M optimization approaches. A framework is identified to mechanize the inspection planning process in order to reduce the effect arising from human involvement, while improving the effective utilization of data from different sources. The suggested approach improves the quality of an inspection program, while minimizing the variability and cost to the engineering contractors as well as to the owners of O&G facilities. Practical implications – The mechanization of inspection planning (MIP) is vital to have inspection programs with uniform quality. The currently employed inspection practices face challenges in maintaining uniform quality from one inspection program to another due to the variability present in the planning process, especially among the different inspection planning engineers. The suggested fuzzy logic-based MIP supports the minimization of the variability and increases the quality of inspection programs. Originality/value – The paper provides a comprehensive review of research contributions and industrial development efforts. These will be useful to the life cycle stakeholders in both academia and industry in understanding the inspection planning problem and solution space within the O&G asset I&M context.


2021 ◽  
Vol 6 (11) ◽  
pp. 163
Author(s):  
Unni Eidsvig ◽  
Monica Santamaría ◽  
Neryvaldo Galvão ◽  
Nikola Tanasic ◽  
Luca Piciullo ◽  
...  

Keeping transport links open in adverse conditions and being able to restore connections quickly after extreme events are important and demanding tasks for infrastructure owners/operators. This paper is developed within the H2020 project SAFEWAY, whose main goal is to increase the resilience of terrestrial transportation infrastructure. Risk-based approaches are excellent tools to aid in the decision-making process of planning maintenance and implementation of risk mitigation measures with the ultimate goal of reducing risk and increasing resilience. This paper presents a framework for quantitative risk assessment which guides an integrated assessment of the risk components: hazard, exposure, vulnerability and consequences of a malfunctioning transportation infrastructure. The paper guides the identification of failure modes for transportation infrastructure exposed to extreme events (natural and human-made) and provides models for and examples of hazard, vulnerability and risk assessment. Each assessment step must be made in coherence with the other risk components as an integral part of the risk assessment.


2021 ◽  
Vol 8 (7) ◽  
pp. 436-445
Author(s):  
Humberto Guanche Garcell ◽  
Farid Ahmad Sohail ◽  
Tania M Fernandez Hernandez

Background: The exposure to COVID-19 by staff has a major impact on healthcare system. Objective: identify potential failures related to the exposure of HCWs to COVID-19, evaluate the potential causes and effects, and the actions to mitigate the risk of exposure. Methods: Members of the infection control department, quality department, nursing department, and medical administration were selected as team members to conduct the Failure Mode and Effect Analysis (FMEA). The identification of potential failure modes, causes and effects was conducted in consecutive meetings. Accordingly, were identified actions to reduce the staff exposure to COVID-19. Results: The description of the complex process was conducted including the potential in-hospital and hospital-community interaction for transmission of infection to staff. In eight areas were identified 20 potential failure modes: Hand hygiene, personal protective equipment, detection of sick staff, exposure in common areas, hiring new staff, staff living conditions, and staff knowledge, skill, and perceptions about all other infection control practices. The highest ranked priorities were identified including improper PPE use (556 points), late detection of sick staff (520 points), and poor compliance with infection control practices in common areas (436 points) respectively. The mitigation strategies focused on a wide range of actions to improve the staff education, improve practices and procedures, monitor practices and feedback to staff in a continuous quality improvement cycle. Conclusion: Data presented provides a comprehensive evaluation of the risks and mitigation measures to prevent the staff exposure to COVID-19 conducted in a high-risk environment by a qualified FMEA team. Keywords: failure modes and effect analysis; quality management; risk mitigation; staff exposure; COVID-19; Qatar;


Author(s):  
S. Khadpe ◽  
R. Faryniak

The Scanning Electron Microscope (SEM) is an important tool in Thick Film Hybrid Microcircuits Manufacturing because of its large depth of focus and three dimensional capability. This paper discusses some of the important areas in which the SEM is used to monitor process control and component failure modes during the various stages of manufacture of a typical hybrid microcircuit.Figure 1 shows a thick film hybrid microcircuit used in a Motorola Paging Receiver. The circuit consists of thick film resistors and conductors screened and fired on a ceramic (aluminum oxide) substrate. Two integrated circuit dice are bonded to the conductors by means of conductive epoxy and electrical connections from each integrated circuit to the substrate are made by ultrasonically bonding 1 mil aluminum wires from the die pads to appropriate conductor pads on the substrate. In addition to the integrated circuits and the resistors, the circuit includes seven chip capacitors soldered onto the substrate. Some of the important considerations involved in the selection and reliability aspects of the hybrid circuit components are: (a) the quality of the substrate; (b) the surface structure of the thick film conductors; (c) the metallization characteristics of the integrated circuit; and (d) the quality of the wire bond interconnections.


Author(s):  
Erik Garrido ◽  
Euro Casanova

It is a regular practice in the oil industry to modify mechanical equipment to incorporate new technologies and to optimize production. In the case of pressure vessels, it is occasionally required to cut large openings in their walls in order to have access to the interior part of the equipment for executing modifications. This cutting process produces temporary loads, which were obviously not considered in the original mechanical design. Up to now, there is not a general purpose specification for approaching the assessments of stress levels once a large opening in a vertical pressure vessel has been made. Therefore stress distributions around large openings are analyzed on a case-by-case basis without a reference scheme. This work studies the distribution of the von Mises equivalent stresses around a large opening in FCC Regenerators during internal cyclone replacement, which is a frequently required practice for this kind of equipment. A finite element parametric model was developed in ANSYS, and both numerical results and illustrating figures are presented.


2021 ◽  
Vol 13 (12) ◽  
pp. 6596
Author(s):  
Riccardo Ceccato ◽  
Riccardo Rossi ◽  
Massimiliano Gastaldi

The diffusion of the COVID-19 pandemic has induced fundamental changes in travel habits. Although many previous authors have analysed factors affecting observed variations in travel demand, only a few works have focused on predictions of future new normal conditions when people will be allowed to decide whether to travel or not, although risk mitigation measures will still be enforced on vehicles, and innovative mobility services will be implemented. In addition, few authors have considered future mandatory trips of students that constitute a great part of everyday travels and are fundamental for the development of society. In this paper, logistic regression models were calibrated by using data from a revealed and stated-preferences mobility survey administered to students and employees at the University of Padova (Italy), to predict variables impacting on their decisions to perform educational and working trips in the new normal phase. Results highlighted that these factors are different between students and employees; furthermore, available travel alternatives and specific risk mitigation measures on vehicles were found to be significant. Moreover, the promotion of the use of bikes, as well as bike sharing, car pooling and micro mobility among students can effectively foster sustainable mobility habits. On the other hand, countermeasures on studying/working places resulted in a slight effect on travel decisions.


2021 ◽  
Vol 11 (11) ◽  
pp. 5274
Author(s):  
Manuel J. Carretero-Ayuso ◽  
Gonzalo Sánchez-Barroso ◽  
Jaime González-Domínguez ◽  
Justo García-Sanz-Calcedo

The value of a house depends not only on the quality of the construction elements but also on the functionality of its installations. Making mistakes during the design and even execution phases of installations in newly built homes is common. This paper determines, catalogues, and quantifies faults in electrical and telecommunications installations in dwellings based on owners’ complaints and using the ‘learning from faults’ philosophy. To this end, 154 complaints concerning these installations in all of Spain were analyzed and protocolized. The results show that, in all types of dwellings, the most common fault was ‘alterations and malfunctions’ (81%), followed by ‘incorrect or lack of placement of elements’ (14%). The pathological origin with the greatest presence in the research was ‘shortcomings and omissions in the installation’ (40%) and ‘anomalies in the installation’ (36%). Moreover, all functional deterioration processes as well as the type of dwelling where each of these parameters occurred most were defined and quantified (association between each fault and its cause). Finally, the ‘probability factor’ (PF) was determined, which numerically quantifies the probable existence of complaints according to four ranges. The results will pave the way for more precise inspections during the construction phase.


2021 ◽  
Vol 11 (5) ◽  
pp. 2153
Author(s):  
Nadia Giuffrida ◽  
Maja Stojaković ◽  
Elen Twrdy ◽  
Matteo Ignaccolo

Container terminals are the main hubs of the global supply chain but, conversely, they play an important role in energy consumption, environmental pollution and even climate change due to carbon emissions. Assessing the environmental impact of this type of port terminal and choosing appropriate mitigation measures is essential to pursue the goals related to a clean environment and ensuring a good quality of life of the inhabitants of port cities. In this paper the authors present a Terminal Decision Support Tool (TDST) for the development of a container terminal that considers both operation efficiency and environmental impacts. The TDST provides environmental impact mitigation measures based on different levels of evolution of the port’s container traffic. An application of the TDST is conducted on the Port of Augusta (Italy), a port that is planning infrastructural interventions in coming years in order to gain a new role as a reference point for container traffic in the Mediterranean.


Author(s):  
Agnes Ann Feemster ◽  
Melissa Augustino ◽  
Rosemary Duncan ◽  
Anand Khandoobhai ◽  
Meghan Rowcliffe

Abstract Disclaimer In an effort to expedite the publication of articles related to the COVID-19 pandemic, AJHP is posting these manuscripts online as soon as possible after acceptance. Accepted manuscripts have been peer-reviewed and copyedited, but are posted online before technical formatting and author proofing. These manuscripts are not the final version of record and will be replaced with the final article (formatted per AJHP style and proofed by the authors) at a later time. Purpose The purpose of this study was to identify potential failure points in a new chemotherapy preparation technology and to implement changes that prevent or minimize the consequences of those failures before they occur using the failure modes and effects analysis (FMEA) approach. Methods An FMEA was conducted by a team of medication safety pharmacists, oncology pharmacists and technicians, leadership from informatics, investigational drug, and medication safety services, and representatives from the technology vendor. Failure modes were scored using both Risk Priority Number (RPN) and Risk Hazard Index (RHI) scores. Results The chemotherapy preparation workflow was defined in a 41-step process with 16 failure modes. The RPN and RHI scores were identical for each failure mode because all failure modes were considered detectable. Five failure modes, all attributable to user error, were deemed to pose the highest risk. Mitigation strategies and system changes were identified for 2 failure modes, with subsequent system modifications resulting in reduced risk. Conclusion The FMEA was a useful tool for risk mitigation and workflow optimization prior to implementation of an intravenous compounding technology. The process of conducting this study served as a collaborative and proactive approach to reducing the potential for medication errors upon adoption of new technology into the chemotherapy preparation process.


Sign in / Sign up

Export Citation Format

Share Document