Exploratory Analysis to Estimate Axial Fracture Toughness for Zr-2.5Nb Pressure Tubes Using Test Data From Small Curved Compact Specimens

Author(s):  
Steven X. Xu ◽  
Kim Wallin

Zr-2.5Nb pressure tubes are in-core, primary coolant containment of CANDU(1) nuclear reactors. Technical requirements for in-service evaluation of pressure tubes are provided in the Canadian Standards Associate (CSA) N285.8. These requirements include the evaluation of service conditions for protection against fracture of operating pressure tubes and demonstration of leak-before-break. Axial fracture toughness for pressure tubes is a key input in the evaluation of fracture protection and leak-before-break. The 2015 Edition of CSA N285.8 provides a pressure tube axial fracture toughness prediction model that is applicable to pressure tubes late life conditions. The fracture toughness prediction model in CSA N285.8-15 is based on rising pressure burst tests performed on pressure tube sections with axial cracks under simulated pressure tube late life conditions. Due to the associated high cost of testing and high consumption of pressure tube material, it is not practical to perform a large number of fracture toughness burst tests. On the other hand, more fracture toughness data is required to improve the existing pressure tube axial fracture toughness prediction model. There is strong motivation to estimate pressure tube axial fracture toughness using test data from small specimens. The estimated pressure tube fracture toughness using test data from small specimens can fill the gaps in the burst test toughness data, as well as provide information on material variability and data scatter. Against this background, an exploratory analysis of estimating pressure tube axial fracture toughness using test data from small curved compact specimens has been performed and is described in this paper. The estimated values of pressure tube axial fracture toughness using the test data from small curved compact specimens are compared with the measured toughness from burst tests of pressure tube sections with axial cracks to check the feasibility of this approach.

2010 ◽  
Vol 132 (2) ◽  
Author(s):  
M. D. Pandey ◽  
A. K. Sahoo

The leak-before-break (LBB) assessment of pressure tubes is intended to demonstrate that in the event of through-wall cracking of the tube, there will be sufficient time followed by the leak detection, for a controlled shutdown of the reactor prior to the rupture of the pressure tube. CSA Standard N285.8 (2005, “Technical Requirements for In-Service Evaluation of Zirconium Alloy Pressure Tubes in CANDU Reactors,” Canadian Standards Association) has specified deterministic and probabilistic methods for LBB assessment. Although the deterministic method is simple, the associated degree of conservatism is not quantified and it does not provide a risk-informed basis for the fitness for service assessment. On the other hand, full probabilistic methods based on simulations require excessive amount of information and computation time, making them impractical for routine LBB assessment work. This paper presents an innovative, semiprobabilistic method that bridges the gap between a simple deterministic analysis and complex simulations. In the proposed method, a deterministic criterion of CSA Standard N285.8 is calibrated to specified target probabilities of pressure tube rupture based on the concept of partial factors. This paper also highlights the conservatism associated with the current CSA Standard. The main advantage of the proposed approach is that it retains the simplicity of the deterministic method, yet it provides a practical, risk-informed basis for LBB assessment.


Author(s):  
Cheng Liu ◽  
Leonid Gutkin ◽  
Douglas Scarth

Zr-2.5Nb pressure tubes in CANDU 1 reactors are susceptible to hydride formation when the solubility of hydrogen in the pressure tube material is exceeded. As temperature decreases, the propensity to hydride formation increases due to the decreasing solubility of hydrogen in the Zr-2.5Nb matrix. Experiments have shown that the presence of hydrides is associated with reduction in the fracture toughness of Zr-2.5Nb pressure tubes below normal operating temperatures. Cohesive-zone approach has recently been used to address this effect. Using this approach, the reduction in fracture toughness due to hydrides was modeled by a decrease in the cohesive-zone restraining stress caused by the hydride fracture and subsequent failure of matrix ligaments between the fractured hydrides. As part of the cohesive-zone model development, the ligament thickness, as represented by the radial spacing between adjacent fractured circumferential hydrides, was characterized quantitatively. Optical micrographs were prepared from post-tested fracture toughness specimens, and quantitative metallography was performed to characterize the hydride morphology in the radial-circumferential plane of the pressure tube. In the material with a relatively low fraction of radial hydrides, further analysis was performed to characterize the radial spacing between adjacent fractured circumferential hydrides. The discrete empirical distributions were established and parameterized using continuous probability density functions. The resultant parametric distributions of radial hydride spacing were then used to infer the proportion of matrix ligaments, whose thickness would not exceed the threshold value for low-energy failure. This paper describes the methodology used in this assessment and discusses its results.


Author(s):  
Steven X. Xu ◽  
Kim Wallin ◽  
David Cho

Abstract Zr-2.5Nb pressure tubes are primary pressure boundaries in a CANDU2 reactor. Design of pressure tube dimensions allows testing of a pressure tube section at its full size in the laboratory. Burst tests, i.e., internally pressuring pressure tube sections containing axial through-wall cracks till burst, have been used to provide test data of fracture toughness for pressure tubes with axial flaws. The advantage of measuring fracture toughness from burst tests is that measured toughness values are directly applicable to operating pressure tubes. Burst tests, however, are costly and consume considerable amount of material. Only a small number of burst tests can be performed in practice. There is strong motivation to estimate burst test fracture toughness using data from small specimen tests. The estimated burst test fracture toughness can fill the gap in the measured burst test toughness data, as well as provide information on material variability and data scatter. The technical challenge for estimating burst test toughness is that the estimated burst test toughness using data from low cost, small specimen tests must be reliable and representative of burst test specimen behavior with high confidence. A framework for accurately estimating burst test toughness using data from curved compact tests has been under development and is described in this paper. Aspects of technical basis and current status of developing analytical procedures for systematically estimating burst test toughness are presented.


Author(s):  
Douglas Scarth ◽  
Leonid Gutkin

Requirements for pressure-temperature limits to protect against rupture of CANDU nuclear reactor Zr-Nb pressure tubes are provided in the Canadian Standards Association (CSA) Standard N285.8. The requirements are based on a stability evaluation of a postulated axial through-wall flaw for all ASME Service Level A, B, C and D loadings. The flaw stability evaluation is strongly dependent on the fracture toughness of the Zr-Nb pressure tube material. The fracture toughness of Zr-Nb pressure tubes is decreasing with operating hours. The decrease in fracture toughness as well as compounding conservatisms based on using bounding values make deterministic evaluations more challenging. The CSA Standard N285.8 permits probabilistic evaluations of fracture protection, but does not provide acceptance criteria. Proposed acceptance criteria that meet the intent of the design basis for Zr-Nb pressure tubes have been developed. The proposed acceptance criteria consist of a proposed maximum allowable conditional probability of pressure tube rupture for the entire reactor core, as well as a proposed maximum allowable conditional probability of rupture of a single pressure tube. The paper provides a description of the technical basis for the proposed acceptance criteria for probabilistic evaluations of fracture protection.


Author(s):  
Jun Cui ◽  
Gordon K. Shek

CANDU® reactor uses Zr-2.5Nb alloy pressure tubes as the primary coolant containment. Fracture toughness properties of the pressure tubes are required for evaluation of fracture initiation and leak-before-break. This paper presents an experimental study on the effects of hydride morphology and test temperature on axial fracture toughness of a cold-worked, unirradiated Zr-2.5Nb pressure tube. Compact tension specimens were prepared from one tube section which contained as-received hydrogen concentration and another section which was electrolytically hydrided to 70 ppm hydrogen. Reoriented hydrides were formed in the hydrided tube section in ten thermal cycles under an applied tensile hoop stress of 160 MPa. The hydride morphologies were characterized by a parameter referred to as the hydride continuity coefficient (HCC), which provided a measure of the extent to which the hydrides were reoriented with respect to the applied stress direction. Partially reoriented hydrides with HCC between 0.3–0.4 were formed under the stress and temperature cycles used to precipitate the hydrides. J-R curves were generated to characterize the fracture behavior of the specimens tested at five different temperatures: 25°C (room temperature), 100°C, 150°C, 200°C and 250°C. Test results indicate that, for the as-received specimens, the fracture toughness is relatively high at room temperature and not significantly affected by the test temperature between room temperature and 250°C. For the 70 ppm hydrided specimens containing partially reoriented hydrides, the fracture toughness is significantly lower than that of the as-received specimens at room temperature. At 100°C, the fracture toughness is higher than that at room temperature but the average value is still lower than that of the as-received specimens. The specimens exhibit either brittle or ductile fracture behavior with a sharp transition to an upper-shelf toughness value. At 150°C, the specimens achieve an upper-shelf toughness level. Between 150°C and 250°C, the fracture toughness is similar to that of the as-received specimens and not affected by the reoriented hydrides.


Author(s):  
Bruce W. Williams ◽  
William R. Tyson ◽  
C. Hari M. Simha ◽  
Bogdan Wasiluk

Abstract CSA Standard N285.8 requires leak-before-break and fracture protection for Zr-2.5Nb pressure tubes in operating CANDU reactors. In-service deuterium uptake causes the formation of hydrides, which can result in additional variability and reduction of fracture toughness. Pressure tube fracture toughness is assessed mainly through rising pressure tube section burst tests. Given the length of the ex-service pressure tubes required for burst testing and the requirement to increase the hydrogen content of irradiated ex-service pressure tubes, only a limited number of burst tests can be performed. Using small-scale compact tension, C(T), specimens are advantageous for obtaining a statistically significant number of fracture toughness measurements while using less ex-service pressure tube material. This work focuses on the study of C(T) geometry designs in order to obtain crack growth resistance and fracture toughness closer to those deduced from burst tests. Because C(T) specimens must be machined from pressure tubes of about 100 mm in diameter and 4 mm in wall thickness, they are out-of-plane curved. As well, they undergo significant tunnelling during crack extension. These two factors can result in a violation of the ASTM standard for fracture toughness testing. The current work examined the influence of specimen curvature and tunnelled crack front on the crack growth resistance curve, or J-R curve. Finite element (FE) models using stationary and growing cracks were used in a detailed numerical investigation. To capture crack tunnelling in the FE models, a damage mechanics approach was adopted, with the critical strain to accumulate damage being a function of crack front stress triaxiality. The J-integral numerically estimated from the domain integral approach was compared to the J-integral calculated from the analytical equations in the ASTM E-1820 standard. In most cases, the difference between the numerical and the standard estimations was less than 10%, which was considered acceptable. It was found that at higher load levels of load-line-displacement, specimen curvature influenced the J-integral results. Crack tunnelling was shown to have a small influence on the estimated J-integrals, in comparison with the straight crack fronts. A modest number of experiments were carried out on unirradiated Zr-2.5Nb pressure tube material using three designs of curved C(T) specimens. It was found that the specimens of both designs that featured a width of 34 mm had more than twice the crack extension of the specimens of the 17-mm width design. The 17-mm width specimens are used mainly to assess the small-scale fracture toughness of pressure tube material. Additionally, the applied J-integral at the maximum load was about 1.4 times higher for the larger-width C(T) specimens. These C(T) specimens also produced J-R curves with greater crack extensions, which were closer to those obtained from the pressure tube section burst tests. Artificially hydrided pressure tube material was not considered in the current work, to avoid any potential source of experimental variability; however, it should be considered in future work.


Author(s):  
Christopher Manu ◽  
Suresh Datla ◽  
Leonid Gutkin

Canadian Nuclear Standard CSA N285.8, “Technical requirements for in-service evaluation of zirconium alloy pressure tubes in CANDU® reactors”(1), permits the use of probabilistic methods when performing assessments of the reactor core. A non-mandatory annex has been proposed for inclusion in the CSA Standard N285.8, to provide guidelines for performing uncertainty analysis in probabilistic fitness-for-service evaluations within the scope of this Standard, such as the probabilistic evaluation of leak-before-break. The proposed annex outlines the general approach to uncertainty analysis as being comprised of the following major activities: identification of influential variables, characterization of uncertainties in influential variables, and subsequent propagation of these uncertainties through the evaluation framework or code. The application of the proposed guidelines for uncertainty analysis was exercised by performing a pilot study for one of the evaluations within the scope of the CSA Standard N285.8, the probabilistic evaluation of leak-before-break based on a postulated through-wall crack. The pilot study was performed for a representative CANDU reactor unit using the recently developed computer code P-LBB that complies with requirements of Canadian Nuclear Standard N286.7 for quality assurance of analytical, scientific, and design computer programs for nuclear power plants. This paper discusses the approach used and the results obtained in the first stage of this pilot study, the identification of influential variables. The proposed annex considers three approaches for identifying influential variables, which may be used separately or in combination: analysis of probabilistic evaluation outputs, sensitivity analysis and expert judgment. In this pilot study, local sensitivity analysis was used to identify and rank the influential variables. For each input variable in the probabilistic evaluation of leak-before-break, the local sensitivity coefficient was determined as the relative change in the output variable associated with a relative change of a small magnitude in the input variable. Each input variable was also varied across a large range to assess the linearity of the relationship between the input variable and the output variable. All relevant input variables were ranked according to the absolute value of their sensitivity coefficients to identify the influential variables. On the basis of the results obtained, the pressure tube wall thickness was found to be the most influential variable in the probabilistic evaluation of leak-before-break based on a postulated through-wall crack, followed by the fracture toughness of Zr-2.5Nb pressure tube material and the pressure tube inner diameter. The results obtained at this stage were then used at the second stage of this pilot study, the uncertainty characterization of influential variables, as discussed in the companion paper PVP2018-85011.


Author(s):  
Preeti Doddihal ◽  
Douglas Scarth ◽  
Paula Mosbrucker ◽  
Steven Xu

The core of a CANDU®1 (CANada Deuterium Uranium) pressurized heavy water reactor includes horizontal Zr-2.5Nb alloy pressure tubes that contain the fuel. Pressure-temperature limits are used in CANDU® reactors for normal operation heat-up and cool-down conditions to maintain margins against fracture. The pressure-temperature limits are determined by postulating a 20 mm long axial through-wall crack in the pressure tube and using a fracture toughness-based calculation procedure. Due to a corrosion reaction with the heavy water coolant, pressure tubes absorb deuterium isotope in service, resulting in an increase in hydrogen equivalent concentration. Experiments have shown that high hydrogen equivalent concentration reduces the fracture toughness of pressure tube material at low temperatures during reactor heat-up and cool-down from normal operating temperatures. New fracture toughness curves that are applicable to material with high hydrogen equivalent concentration have been developed to address this issue. These curves are being used to develop new pressure-temperature limits for fracture protection of CANDU® pressure tubes. The methodology for deriving the pressure-temperature limits for a CANDU® Zr-2.5Nb pressure tube using the new fracture toughness curves is presented in this paper. Preliminary results of pressure-temperature limits for a CANDU® reactor are also provided.


Author(s):  
Jun-Young Jeon ◽  
Dong-Il Ryu ◽  
Yun-Jae Kim ◽  
Mi-Yeon Lee ◽  
Jin-Weon Kim

In this study, a method to predict fracture toughness of aged cast austenitic stainless steels (CASSs) using small punch (SP) test and finite element (FE) analysis is proposed. Grade CF8M is considered and thermally aged up to 5,000 hours at 400°C. SP tests and fracture toughness test using compact tension (C(T)) specimen are conducted with virgin (unaged) and aged CF8M. FE analyses performed in this study use ductile fracture simulation technique with ‘the multi-axial fracture strain model’. The multi-axial fracture strain model for each aged CF8M are determined from SP test data and FE analyses. Fracture toughness of aged CF8M are predicted by conducting fracture toughness test simulations using FE damage analyses. Predicted fracture toughness results are compared with C(T) data to validate the method suggested in this study. The predicted initiation toughness values are predicted well and fracture toughness values are slightly conservative compared to test data.


Sign in / Sign up

Export Citation Format

Share Document