Use of Stainless Steel Tubing in Boiling Applications for Shell and Tube Heat Exchangers

Author(s):  
Sarah Radovcich ◽  
Cathleen Shargay ◽  
Kuntak Daru

Abstract The use of stainless steel (SS) tubes in boiling applications must consider the potential risk of chloride stress corrosion cracking (SCC). Most steam generating tube bundles are carbon steel or low alloy steels, but occasionally, higher alloys are needed for the process side corrosion resistance. The use of SS tubes for these cases has had both successes and failures. SS has performed very well in other water and steam services, such as condensing, steam superheating, and boiler feed water (BFW) preheating applications, but for steam generating (i.e. boiling services) the experience has been mixed. Similar failures have also occurred in various process services which are being heated and contain water. The boiling of the water can lead to SCC. Some of the variables that can affect the risk of SCC for SS tube bundles in boiling services include: chloride concentration, tube wall temperature, exchanger design (i.e. kettle, thermosiphons, etc.), vertical vs. horizontal tubes, full vaporization vs. partial vaporization, recirculation rate, and BFW blow down rate. If SS materials are being considered, the risk of SCC can be determined by analyzing these variables as described in this paper. Where the risk of SCC cannot be avoided, an alternate, resistant tube material should be selected. The material options for various services are presented herein.

Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 530
Author(s):  
Jerzy Niagaj

The article presents results of comparative A-TIG welding tests involving selected unalloyed and fine-grained steels, as well as high-strength steel WELDOX 1300 and austenitic stainless steel AISI 304L. The tests involved the use of single ingredient activated fluxes (Cr2O3, TiO2, SiO2, Fe2O3, NaF, and AlF3). In cases of carbon and low-alloy steels, the tests revealed that the greatest increase in penetration depth was observed in the steels which had been well deoxidized and purified during their production in steelworks. The tests revealed that among the activated fluxes, the TiO2 and SiO2 oxides always led to an increase in penetration depth during A-TIG welding, regardless of the type and grade of steel. The degree of the aforesaid increase was restricted within the range of 30% to more than 200%.


Alloy Digest ◽  
2021 ◽  
Vol 70 (6) ◽  

Abstract AK Steel 409 Ni is a 11% chromium ferritic stainless steel microalloyed with titanium and nickel. It provides excellent weldability, toughness, and fabricating characteristics superior to those of type 409 stainless steel in thicknesses over 3.05 mm (0.120 in.). This alloy is a cost effective alternative to mild steels and low-alloy steels that also provides superior corrosion and/or oxidation resistance. The recommended maximum service temperature of AK Steel 409 Ni is 730 °C (1350 °F). This datasheet provides information on composition, physical properties, elasticity, and tensile properties. It also includes information on corrosion resistance as well as heat treating and joining. Filing Code: SS-1336. Producer or source: AK Steel Corporation.


Author(s):  
Gary L. Stevens ◽  
J. Michael Davis ◽  
Les Spain

Draft Regulatory Guide DG-1144 “Guidelines for Evaluating Fatigue Analyses Incorporating the Life Reduction of Metal Components Due to the Effects of the Light-Water Reactor Environment for New Reactors”, July 2006 [1], and Associated Basis Draft Document NUREG/CR-6909 (ANL-06/08), “Effect of LWR Coolant Environments on the Fatigue Life of Reactor Materials”, July 2006 [6] provided methods for addressing environmentally assisted fatigue (EAF) in all new nuclear plant designs. In these documents, a new model was proposed that more accurately accounts for actual plant conditions. The new model includes an EAF correction factor, Fen, which is different from Fen methods previously and currently being considered for adoption into the ASME Code. The Fen methods proposed in DG-1144 are also different than the Fen methods utilized by license renewal applicants, as required by the Generic Aging Lessons Learned (GALL) report [2], as documented in NUREG/CR-5704 [4] (for stainless steel) and NUREG/CR-6583 [3] (for carbon and low alloy steels).


Author(s):  
Hajime Fukumoto ◽  
Hiroshi Kobayashi ◽  
Yukoh Shudo ◽  
Toshiyuki Yamamura ◽  
Yoru Wada ◽  
...  

In 2012, the Japanese regulation for selecting SUS316 austenitic stainless steel with a specific Ni equivalent (SUS316 and SUS316L can be used in the temperature ranges between −45 and 250 °C for a Ni equivalent of ≧28.5%, between −10 and 250 °C for a Ni equivalent of ≧ 27.4%, and between 20 and 250 °C for a Ni equivalent of ≧ 26.3%) as an appropriate material available in hydrogen refueling stations (HRSs) that provide 70 MPa fueling to fuel cell vehicles (FCVs) was updated with the support of NEDO (New Energy and Industrial Technology Development Organization) Program Phase 1 [1].


Author(s):  
Masaru Bodai ◽  
Yuichi Fukuta ◽  
Seiji Asada ◽  
Kentaro Hayashi

In order to develop new design fatigue curves for austenitic carbon steels & low alloy steels and stainless steels and a new design fatigue evaluation method that are rational and have clear design basis, Design Fatigue Curve (DFC) Phase 1 subcommittee and Phase 2 subcommittee were established in the Atomic Energy Research Committee in the Japan Welding Engineering Society. The study on design fatigue curves was actively performed in the subcommittees. In the subcommittees, domestic and foreign fatigue data of small test specimens in air were collected and a comprehensive fatigue database was constructed. Using this fatigue database, the accurate best-fit curves of austenitic carbon steels & low alloy steels and stainless steels were developed by applying tensile strength to a parameter of the curve. Regarding design factors on design fatigue curves, data scatter, mean stress correction, surface finishing effect, size effect and variable loading effect were investigated and each design factor was decided to be individually considered on the design fatigue curves. A Japanese utility project performed large scale fatigue tests using austenitic stainless steel piping and carbon and low-alloy steel flat plates as well as fatigue tests using small specimens to obtain not only basic data but also fatigue data of mean stress effect and surface finishing effect. Those test results were provided to the subcommittee and utilized the above studies. In this paper, the large scale fatigue tests using austenitic stainless steel piping and the best-fit curve of austenitic stainless steel are discussed.


1985 ◽  
Vol 107 (2) ◽  
pp. 172-179 ◽  
Author(s):  
C. B. Allen ◽  
T. F. J. Quinn ◽  
J. L. Sullivan

Experiments are described in which high-chromium ferritic steel pins were slid, without lubrication, against austenitic stainless steel disks, under loads varying from 7 to 95N and speeds varying from 0.23 to 3.3 ms−1. Although no external heating was supplied, all the worn surfaces were oxidized, as also was the wear debris, indicating that some form of mild wear always occurred under these conditions. Measurements were made, using a special tilt correction facility on the Scanning Electron Microscope, of the thicknesses of the oxide formed both on the pin and the disk surfaces, due to the evolution of frictional heating at the interface. The division of heat at the interface was also deduced from thermocouple measurements. These measurements, combined with the surface model used as the basis for the Oxidational Wear Theory, are shown to give rise to independent estimates of the contact temperature (Tc), the number of contacts beneath the pin at any instant (N), and the radius (a) of each of those contacts, that are consistent with those obtained in earlier published experiments involving the mild wear of low-alloy steels. In these earlier experiments, the validity of the estimates of N, Tc and “a,” depended upon the validity of the choice of Arrhenius Constant used in the Oxidational Wear Theory. The correlation between the two sets of estimates is discussed. Suggestions are made for further work to validate the Oxidational Theory of the mild wear of these industrially-important materials, particularly at elevated temperatures.


Author(s):  
Yuichi Fukuta ◽  
Hiroshi Kanasaki ◽  
Seiji Asada ◽  
Takehiko Sera

The published papers related to the effects of surface finish on fatigue strength are reviewed in order to formulate its factor in the design fatigue curve in air environment. Firstly, some of regulations and literatures were examined to verify the surface finish effect on fatigue strength and formulation of that in design fatigue curve. The fatigue strength of carbon and low alloy steels is decreased with an increase of its surface roughness and tensile strength but that of stainless steel is not decreased except for special conditions. After screening the data of carbon and low alloy steels, a surface finish factor is formulated with these data which is a function of tensile strength, surface roughness and mean stress.


CORROSION ◽  
1961 ◽  
Vol 17 (2) ◽  
pp. 53t-54t ◽  
Author(s):  
N. D. GROVES ◽  
L R. SCHARFSTEIN ◽  
C. M. EISENBROWN

Abstract A case history is given of failures of stainless steel deaerator trays used in a deaerating feed water heater. Trays fabricated from Type 201 and Type 329 stainless steels were reported to have failed by chloride stress corrosion cracking after several months' service. The cracking of the Type 201 was very severe. It is shown that conditions in parts of the deaerating heater promote failure by chloride stress corrosion cracking and the service life of austenitic stainless steels is very short. Annealing after welding of the Type 329 trays would improve resistance to cracking. It is also suggested that Type 430 stainless steel be considered since it is not susceptible to chloride stress corrosion cracking. 6.2.5, 3.5.8, 7.6.8


Sign in / Sign up

Export Citation Format

Share Document