Subsea Intervention System Connector Capacities per the Elastic-Plastic Analysis Methodology

Author(s):  
Ali Sepehri ◽  
Gaurav Bansal ◽  
Mangesh Edke

Abstract The offshore oil and gas industry is drilling into and producing from wells in high-pressure, high-temperature (HPHT) environments. This has created a greater demand to develop more advanced tools and new technology to safely overcome the challenges in these operations. Due to the sensitivity and potential impact on the environment, the industry is striving to homogenize the design and acceptance criteria. The API 17G is the industry standard for offshore intervention operations. According to the standard, design verification is performed using finite element analysis (FEA). The standard provides three sets of criteria for determining capacities that adopt the methodologies from ASME Boiler Pressure Vessel Code (BPVC) Section VIII, Div. 3. The objective of this study is to evaluate tension, pressure, and bending moment capacities per the elastic-plastic analysis methodologies outlined in API 17G for a subsea intervention system connector. The global and local failure capacities are presented for yielding load, plastic collapse, and 2% strain methods. Results indicate that the plastic collapse method is the most conservative approach for evaluating the global capacity of the connector.

Author(s):  
Ali Sepehri ◽  
Stuart Harbert ◽  
Joe Wilhelmi

The oil and gas industry is currently drilling into and producing from wells in high-pressure, high-temperature (HPHT) environments. This has created a greater demand to develop more advanced tools and new technology to safely overcome the challenges in these operations. The Bureau of Safety and Environmental Enforcement (BSEE) requires equipment operating in HPHT environments to pass a design verification analysis. The design verification shall be evaluated using finite element analysis (FEA) per ASME Boiler Pressure Vessel Code (BPVC), Section VIII, Division 3 [1] and API 17TR8 [2]. The objective of this study is to generate a pressure-bending-tension (PBT) capacity chart per the elastic-plastic analysis methodology (global collapse criteria) outlined in KD-230 [1] for a subsea tree connector. The PBT capacity chart covers a wide range of normal operating conditions. Results indicate that the structural capacities from the elastic-plastic analysis methodology are higher than those determined by the standard elastic analysis methodology.


Author(s):  
Veronica Ferrara ◽  
Lars E. Bakken ◽  
Stefano Falomi ◽  
Giuseppe Sassanelli ◽  
Matteo Bertoneri ◽  
...  

In the last few years wet compression has received special attention from the oil and gas industry. Here, the development and implementation of new subsea solutions are important focus areas to increase production and recovery from existing fields. This new technology will contribute to exploitation of small and remote fields and access in very deep water. In this regard liquid tolerance represents a viable option to reduce the cost of a subsea compression station bringing considerable simplification to the subsea process itself. However, the industry may experience some drawbacks: the various levels of liquid presence may create operational risk for traditional compressors; the liquid may cause mechanical damage because of erosion and corrosion of the internal units and the compressor performance might be affected too. The experimental investigation conducted in the study considers dry and wet conditions in a laboratory setup to understand how the presence of liquid influences the stage performance. The test campaign has been carried out at the Norwegian University of Science and Technology, NTNU, in Trondheim, to assess the performance and operating range of a tridimensional impeller when processing a mixture of gas and liquid phases. Experimental results allowed validating the OEM internal prediction code for compressors’ performance in wet conditions. Finally, the effect of liquid on machine operability has been assessed through a left-limit investigation by means of dynamic pressure probes readings in order to evaluate the stall/surge behaviour for different values of liquid mass fraction.


Author(s):  
Ricardo de Lepeleire ◽  
Nicolas Rogozinski ◽  
Hank Rogers ◽  
Daniel Ferrari

Within the oil and gas industry, significant costs are often incurred by the operating company during the well-construction phase of drilling operations. Specifically, the operators cost to drill a well can cost tens or hundreds of millions of USD. One specific area where significant changes in drilling operations have occurred is in the offshore environment, specifically operations from mobile offshore drilling units (MODUs). With the ever-increasing demand for oil and gas, operators globally have increased drilling budgets in an effort to meet forecasted demand. However, the increased budgets are often eroded or offset by increasing drilling costs. Therefore, operators are continually in search of new technology, processes, or procedures to help improve drilling operations and overall operational efficiencies. One Latin America operator identified a common operation as a possible area where operational cost could be easily reduced through the implementation of systems that allow the manipulation of valve manifolds remotely. Additionally, operating such valve manifolds remotely enhanced operational safety for personnel, which was an equally important consideration. This paper details the evaluation of existing equipment and procedures and a process used to develop a new remote-control system using a machine logic control (MLC) that has been designed, built, tested, and deployed successfully on MODUs operating in Latin America.


Author(s):  
Frank Gareau ◽  
Alex Tatarov

Fibreglass reinforced plastic pipe (FRP) is the second most common type of pipe in the Canadian oil and gas industry, based on installed length. Industry methods to define risks and prevent failures are difficult because industry is still learning how these types of materials fail. Current industry failure records indicate that the failure rates for some of these materials are higher than steel failure rates. Unique details related to a specific FRP failure will be discussed in this paper. This failure occurred on an 8-inch OD FRP pipeline at the bottom of a riser. The failure resulted in a spill and a fire. The reasons for failure and fire initiation were analysed separately. The failure was a result of a combination of several types of stresses and material degradation. Both static and dynamic stresses contributed to the failure. • Ground settling resulted in high static bending stress of the last section of the pipeline connected to the riser elbow supported by the anchor. • The failure was in the last connection of the pipeline. Static tie-in stresses could have contributed to the failure. • Static stresses were evaluated using Finite Element Analysis (FEA) approach and found to be insufficient for the failure. • Dynamic stresses contributed to the failure. The failure happened soon after a power outage, when numerous wells were restarted, and several fluid surges may have occurred. • Material degradation associated with a specific orientation of glass fibres at the connection pup contributed to the failure. The failure sequence was established and different modes of fire initiation were analysed.


Author(s):  
Ho Minh Kha ◽  
Nguyen Thanh Nam ◽  
Vo Tuyen ◽  
Nguyen Tan Ken

The gas-liquid cylindrical cyclone (GLCC) separators is a fairly new technology for the oil and gas industry. The current GLCC separator, a potential alternative for the conventional one, was studied, developed, and patented by Chevron company and Tulsa University (USA). It is used for replacing the traditional separators that have been used over the last 100 years. In addition, it is significantly attracted to petroleum companies in recent years because of the effect of the oil world price. However, the behavior of phases in the instrument is very rapid, complex, and unsteady, which may cause the difficulty of enhancing the performance of the separation phases. The multiple recent research shows that the inlet geometry is probably the most critical element that influences directly to the performance of separation of phases. Though, so far, most of the studies of GLCC separator were limited with the one inlet model. The main target of the current study is to deeply understand the effect of different geometrical configurations of the circular inlet on performances of GLCC by the experimental method for two phases flow (gas-liquid). Two different inlet configurations are constructed, namely: One circular inlet and two symmetric circular inlets. As a result, we propose the use of two symmetric circular inlets to enhance separator efficiency because of their effects.


Author(s):  
G.A. Ermolaev ◽  
N.V. Gorbunov

Hydrocarbon raw materials are the cornerstone of modern civilization. Evaluating the resources of existing fields is the most important condition for making a decision on the feasibility of production using new technologies. We discuss the results of analysis and design of a rope tension sensor model for delivering specialized equipment to wells to determine the prospects of a well. The calculations were performed using the universal finite element analysis software package ANSYS.


2021 ◽  
Author(s):  
Michael Ramon ◽  
Tony Wooley ◽  
Kyle Martens ◽  
Amy Farrar ◽  
Seth Fadaol

Abstract The culture of safety within the oil and gas industry has undergone an evolution since the advent of significant E&P operations in the late 1800s. The initial focus on safety was to protect property, not people. This mentality has shifted over time to include a greater focus on the safety of personnel, in parallel with technology developments that have pushed the limits of operators’ and service providers’ abilities to drill and complete more complicated wells. The safety efforts introduced to date have yielded results in every major HS&E category; however, falls and dropped objects continue to be areas in need of improvement. During cementing rig up and operations there are still many manual activities that require working at heights in the derrick. New technological advances have allowed the industry to reduce the number of hands-on activities on the rig and operators have moved to eliminate these activities by automating operations. Man lifting operations are recognized as a high-risk activity and, as such, many rigs require special permitting. During cementing operations, not only are personnel lifted into hazardous positions, but they are usually equipped with potential dropped objects. Some of these objects, if dropped, reach an impact force that could seriously injure or, in worst cases, result in a fatality. During these operations, personnel are also hoisted along with a heavy cement line in very close proximity. This introduces other dangers such as tangling, pinch points, and blunt force trauma. These risks are heavily increased when working in adverse conditions, such as high winds or rough seas. By utilizing a wireless cement line make up device, along with wireless features on a cement head to release the darts/plugs/balls and operate the isolation valves, an operator can eliminate the need for hands-on intervention. This paper will discuss current cement head technologies available to the operator that allow them to improve safety and efficiencies in operational rig time. Three field studies will be presented that detail running cement jobs with all functions related to the wireless attributes of the cement head. The field studies will present the operational efficiencies achieved by utilizing the wireless features compared to the standard manual method. Before the recent introduction of a wireless cementing line make-up device, a wireless cement head still required hands-on intervention to rig up the tools, putting people in high-risk situations.


2015 ◽  
Author(s):  
D. J. Schlosser ◽  
M.. Johe ◽  
T.. Humphreys ◽  
C.. Lundberg ◽  
J. L. McNichol

Abstract The Oil and Gas industry has explored and developed the Lower Shaunavon formation through vertical drilling and completion technology. In 2006, previously uneconomic oil reserves in the Lower Shaunavon were unlocked through horizontal drilling and completions technologies. This success is similar to the developments seen in many other formations within the Williston Basin and Western Canadian Sedimentary Basin including Crescent Point Energy's Viewfield Bakken play in southeast Saskatchewan. In the Lower Shaunavon play, the horizontal multistage completion era began in 2006, with horizontal divisions of four to six completion stages per well that utilized ball-drop sleeves and open-hole packers. By 2010, the stage count capabilities of ball-drop systems had increased and liners with nine to 16 stages per well were being run. With an acquisition in 2009, Crescent Point Energy began operating in the Lower Shaunavon area. The acquisition was part of the company's strategy to acquire large oil-in-place resource plays. Recognizing the importance that technology brings to these plays, Crescent Point Energy has continuously developed and implemented new technology. In 2009, realizing the success of coiled tubing fractured cemented liners in the southeast Saskatchewan Viewfield Bakken play, Crescent Point Energy trialed their first cemented liners in the Lower Shaunavon formation. At the same time, technology progressed with advancements in completion strategies that were focused on fracture fluids, fracture stages, tool development, pump rates, hydraulic horsepower, environmental impact, water management, and production. In 2013, another step change in technology saw the implementation of coiled tubing activated fracture sleeves in cemented liner completions. Based on field trials and well results in Q4 2013, Crescent Point Energy committed to a full cemented liner program in the Lower Shaunavon. This paper presents the evolution of Crescent Point Energy's Lower Shaunavon resource play of southwest Saskatchewan. The benefits of current completion techniques are: reductions in water use, increased production, competitive well costs, and retained wellbore functionality for potential re-fracture and waterflooding programs.


Author(s):  
Anne Lene Haukanes Hopstad ◽  
Knut O. Ronold ◽  
Kimon Argyriadis

The first edition of the DNV Offshore Standard “Design of Floating Wind Turbine Structures”, DNV-OS-J103, was published in June 2013. The standard represented a condensation of all relevant requirements for floaters in existing DNV standards for the offshore oil and gas industry which were considered relevant also for offshore floating structures for support of wind turbines, supplemented by necessary adaptation to the wind turbine application. As part of the harmonization of the DNV GL codes for the wind turbine industry after the merger between Det Norske Veritas (DNV) and Germanischer Lloyd (GL) in the autumn of 2013, DNV GL currently plans to publish a revision of DNV-OS-J103 in 2017, to become identified as DNVGL-ST-0119. The new revision is intended to reflect the experience gained since 2013 as well as the current trends within the industry.


Sign in / Sign up

Export Citation Format

Share Document