Effect of Replacement of an Anterior Disc and Total Anatomical Facet System on Biomechanics of Lumbar Spine: A FEM Study

Author(s):  
A. Kiapour ◽  
V. K. Goel ◽  
R. W. Hoy ◽  
F. Fellenz ◽  
D. Stewart

To address the issue of facet pain, a potential limiting factor with use of the anterior disc alone, 360 dynamic systems are being considered. The advent of facet replacement technology provides an opportunity to asses the combination of anterior disc with artificial facets to address facet pain. The purpose of this study was to explore the impact such a combination has on the tissues and function of the lumbar spine and each other. To this end a validated finite element (FE) model of the lumbar spine was used to evaluate the biomechanics of an anterior disc arthroplasty with a facet arthroplasty system.

Author(s):  
Nadja Wilmanns ◽  
Agnes Beckmann ◽  
Luis Fernando Nicolini ◽  
Christian Herren ◽  
Rolf Sobottke ◽  
...  

Abstract Lumbar Lordotic correction (LLC), the gold standard treatment for Sagittal Spinal malalignment (SMA), and its effect on sagittal balance have been critically discussed in recent studies. This paper assesses the biomechanical response of the spinal components to LLC as an additional factor for the evaluation of LLC. Human lumbar spines (L2L5) were loaded with combined bending moments in Flexion (Flex)/Extension (Ex) or Lateral Bending (LatBend) and Axial Rotation (AxRot) in a physiological environment. We examined the dependency of AxRot range of motion (RoM) on the applied bending moment. The results were used to validate a Finite Element (FE) model of the lumbar spine. With this model, the biomechanical response of the intervertebral discs (IVD) and facet joints under daily motion was studied for different sagittal spinal alignment (SA) postures, simulated by a motion in Flex/Ex direction. Applied bending moments decreased AxRot RoM significantly (all P<0.001). A stronger decline of AxRot RoM for Ex than for Flex direction was observed (all P<0.0001). Our simulated results largely agreed with the experimental data (all R2>0.79). During daily motion, the IVD was loaded higher with increasing lumbar lordosis (LL) for all evaluated values at L2L3 and L3L4 and posterior Annulus Stress (AS) at L4L5 (all P<0.0476). The results of this study indicate that LLC with large extensions of LL may not always be advantageous regarding the biomechanical loading of the IVD. This finding may be used to improve the planning process of LLC treatments.


2019 ◽  
Vol 8 (3) ◽  
pp. 87-98
Author(s):  
Alaa Abbas ◽  
Felicite Ruddock ◽  
Rafid Alkhaddar ◽  
Glynn Rothwell ◽  
Iacopo Carnacina ◽  
...  

The use of a finite element (FE) method and selection of the appropriate model to simulate soil elastoplastic behaviour has confirmed the importance and sensitivity of the soil properties on the accuracy when compared with experimental data. The properties of the filling soil play a significant role in determining levels of deformation and displacement of both the soil and subterranean structures when using the FE model simulation. This paper investigates the impact of the traffic load on the filling soil deformation when using the traditional method, one pipe in a trench, and a new method, two pipes in a single trench one over the other, for setting up a separate sewer system. The interaction between the buried pipes and the filling soils has been simulated using an elastoplastic FE model. A modified Drucker–Prager cap constitutive model was used to simulate the stress-strain behaviours of the soil. A series of laboratory tests were conducted to identify the elastoplastic properties of the composite soil used to bury the pipes. The FE models were calibrated using a physical lab model for testing the buried pipes under applied load. This allows the FE model to be confidently upgraded to a full-scale model. The pipe-soil interactions were found to be significantly influenced by the soil properties, the method of placing the pipes in the trench and the diameters of the buried pipes. The deformation of the surface soil was decreased by approximately 10% when using the new method of setting up the separate sewer.


2000 ◽  
Author(s):  
Subramanya Uppala ◽  
Robert X. Gao ◽  
Scott Cowan ◽  
K. Francis Lee

Abstract The strength and stability of the lumbar spine are determined not only by the bone and muscles, but also by the visco-elastic structures and the interplay between the different components of the spine, such as ligaments, capsules, annulus fibrosis, and articular cartilage. In this paper we present a non-linear three-dimensional Finite Element model of the lumbar spine. Specifically, a three-dimensional FE model of the L4-5 one-motion segment/2 vertebrae was developed. The cortical shell and the cancellous bone of the vertebral body were modeled as 3D isoparametric eight-nodal elements. Finite element models of spinal injuries with fixation devices are also developed. The deformations across the different sections of the spine are observed under the application of axial compression, flexion/extension, and lateral bending. The developed FE models provided input to both the fixture design and experimental studies.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Gaosheng Wang ◽  
Yunhou Sun ◽  
Ao Zhang ◽  
Lei Zheng ◽  
Yuzheng Lv ◽  
...  

Based on experiments and finite element analysis, the impact resistance of metal flexible net was studied, which can provide reference for the application of metal flexible net in rock fall protection. The oblique (30 degrees) impact experiment of metal flexible net was carried out, the corresponding finite element (FE) to the experiment was established, and the FE model was verified by simulation results to the experimental tests from three aspects: the deformation characteristics of metal flexible net, the time history curves of impact force on supporting ropes, and the maximum instantaneous impact force on supporting ropes. The FE models of metal flexible nets with inclination angles of 0, 15, 30, 45, 60, and 75 degrees were established, and the impact resistance of metal flexible nets with different inclination angles was analyzed. The research shows that the metal flexible net with proper inclination can bounce the impact rock fall out of the safe area and prevent rock fall falling on the metal flexible net, thus realizing the self-cleaning function. When the inclination angle of the metal flexible net is 15, 30, and 45 degrees, respectively, the bounce effect after impact is better, the remaining height is improved, the protection width is improved obviously, and the impact force is reduced. Herein, the impact force of rock fall decreases most obviously at 45 degrees inclination, and the protective performance is relatively good.


Author(s):  
Costin D. Untaroiu ◽  
Jacob B. Putnam ◽  
Jeremy Schap ◽  
Matt L. Davis ◽  
F. Scott Gayzik

Pedestrians represent one of the most vulnerable road users and comprise nearly 22% of the road crash related fatalities in the world. Therefore, protection of pedestrians in the car-to-pedestrian collisions (CPC) has recently generated increased attention with regulations which involve three subsystem tests for adult pedestrian protection (leg, thigh and head impact tests). The development of a finite element (FE) pedestrian model could be a better alternative that characterizes the whole-body response of vehicle–pedestrian interactions and assesses the pedestrian injuries. The main goal of this study was to develop and to preliminarily validate a FE model corresponding to a 50th male pedestrian in standing posture. The FE model mesh and defined material properties are based on the Global Human Body Modeling (GHBMC) 50th percentile male occupant model. The lower limb-pelvis and lumbar spine regions of the human model were preliminarily validated against the post mortem human surrogate (PMHS) test data recorded in four-point lateral knee bending tests, pelvic impact tests, and lumbar spine bending tests. Then, pedestrian-to-vehicle impact simulations were performed using the whole pedestrian model and the results were compared to corresponding pedestrian PMHS tests. Overall, the preliminary simulation results showed that lower leg response is close to the upper boundaries of PMHS corridors. The pedestrian kinematics predicted by the model was also in the overall range of test data obtained with PMHS with various anthropometries. In addition, the model shows capability to predict the most common injuries observed in pedestrian accidents. Generally, the validated pedestrian model may be used by safety researchers in the design of front ends of new vehicles in order to increase pedestrian protection.


Author(s):  
Aihong Zhao ◽  
Ken Digges ◽  
Mark Field ◽  
David Richens

Blunt traumatic rupture of the carotid artery is a rare but life threatening injury. The histology of the artery is key to understanding the aetiology of this injury. The carotid artery is composed of three layers known as the tunica intima, media, and adventitia, with distinct biomechanical properties. In order to examine the behaviour of the carotid artery under external load we have developed a three layer finite element model of this vessel. A rubber-like material model from LS-DYNA was selected for the FE model. The Arbitrary-Lagrangian Eulerian (ALE) approach was adopted to simulate the interaction between the fluid (blood) and the structure (carotid). To verify the FE model, the impact bending tests are simulated using this FE model. Simulation results agree with tests results well. Furthermore, the mechanical behaviour of carotid artery tissues under impact loading were revealed by the simulations. The results provide a basis for a more in-depth investigation of the carotid artery in vehicle crashes. In addition, it provides a basis for further work on aortic tissue finite element modeling.


Author(s):  
A. Ivanov ◽  
A. Kiapour ◽  
N. Ebraheim ◽  
V. K. Goel

The sacrum fractures are very severe trauma which frequently accompanied with lumbar spine fractures. The surgical procedures often require primary stabilization of both lumbar spine and sacrum. To understand the rationale of the instrumentation numerous cadaveric studies were conducted to elucidate the anatomy of fractures and treatment options [1,2,3]. The modern computer technology allowed simulating the fractures and repairing using the Finite Element Analysis, also [4,5]. The last method has a raw of advantages versus cadaveric method such as higher reliability, accuracy, and safety. Finite element investigations of the pelvic fractures allowed comparing the influence of implants on pelvis stability. However, the extensive search of the literature failed to find a finite element model which includes the pelvis and lumbar spine together. Current study is the first step to accomplish this goal. An experimentally validated model of ligamentous lumbar spine was combined with the FE model of pelvis [7], and simulation of the sacrum fractures was conducted.


2012 ◽  
Vol 9 (73) ◽  
pp. 1787-1796 ◽  
Author(s):  
Joris Soons ◽  
Anthony Herrel ◽  
Annelies Genbrugge ◽  
Dominique Adriaens ◽  
Peter Aerts ◽  
...  

Bird beaks are layered structures, which contain a bony core and an outer keratin layer. The elastic moduli of this bone and keratin were obtained in a previous study. However, the mechanical role and interaction of both materials in stress dissipation during seed crushing remain unknown. In this paper, a multi-layered finite-element (FE) model of the Java finch's upper beak ( Padda oryzivora ) is established. Validation measurements are conducted using in vivo bite forces and by comparing the displacements with those obtained by digital speckle pattern interferometry. Next, the Young modulus of bone and keratin in this FE model was optimized in order to obtain the smallest peak von Mises stress in the upper beak. To do so, we created a surrogate model, which also allows us to study the impact of changing material properties of both tissues on the peak stresses. The theoretically best values for both moduli in the Java finch are retrieved and correspond well with previous experimentally obtained values, suggesting that material properties are tuned to the mechanical demands imposed during seed crushing.


2018 ◽  
Vol 140 (3) ◽  
Author(s):  
D. P. Fankell ◽  
R. A. Regueiro ◽  
E. A. Kramer ◽  
V. L. Ferguson ◽  
M. E. Rentschler

Understanding the impact of thermally and mechanically loading biological tissue to supraphysiological levels is becoming of increasing importance as complex multiphysical tissue–device interactions increase. The ability to conduct accurate, patient specific computer simulations would provide surgeons with valuable insight into the physical processes occurring within the tissue as it is heated or cooled. Several studies have modeled tissue as porous media, yet fully coupled thermoporomechanics (TPM) models are limited. Therefore, this study introduces a small deformation theory of modeling the TPM occurring within biological tissue. Next, the model is used to simulate the mass, momentum, and energy balance occurring within an artery wall when heated by a tissue fusion device and compared to experimental values. Though limited by its small strain assumption, the model predicted final tissue temperature and water content within one standard deviation of experimental data for seven of seven simulations. Additionally, the model showed the ability to predict the final displacement of the tissue to within 15% of experimental results. These results promote potential design of novel medical devices and more accurate simulations allowing for scientists and surgeons to quickly, yet accurately, assess the effects of surgical procedures as well as provide a first step toward a fully coupled large deformation TPM finite element (FE) model.


Sign in / Sign up

Export Citation Format

Share Document