Differentiating Structural Damage From Piezo-Fibre-Based Sensor Damage in Multifunctional Composites

Author(s):  
Mohammad Mehdizadeh ◽  
Sabu John ◽  
Chun H. Wang ◽  
Viktor Verijenko ◽  
Wayne Rowe ◽  
...  

Structural health monitoring systems (SHMS) are increasingly being considered for implementation in a wide range of industries, including transport, civil infrastructure, and energy production. As the application of SHM systems increase, it will be increasingly important to quantify the durability, reliability, and reparability of the SHM system. This paper investigates the electrical and electro-mechanical characteristics of piezoelectric sensors in an attempt to distinguish sensor failure from structural damage. This study involved the measurements of pertinent electrical properties for three various types of advanced piezoelectric sensors under fatigue loading. Changes in the capacitance and inductance of these sensors have been recorded, highlighting the deleterious structural changes in the sensor itself without any discernible change in the structure being monitored.

2011 ◽  
Vol 409 ◽  
pp. 633-638
Author(s):  
Mohammad Mehdizadeh ◽  
Sabu John ◽  
Chun H. Wang ◽  
Viktor Verijenko ◽  
Paul Callus

Structural health monitoring systems (SHMS) are increasingly being considered for implementation in a wide range of industries, including transport, civil infrastructure, and energy production. As the application of SHM systems increase, it will be increasingly important to quantify the durability, reliability, and reparability of the SHM system. This paper investigates the electrical and electro-mechanical characteristics of piezoelectric sensors in an attempt to distinguish sensor failure from structural damage [10]. This study involved the measurements of pertinent electrical properties for MFC (Macro Fibre Composite) sensor under fatigue loading and comparison of the strain measurements to characterize the degradation of the structure as well as the MFC. Changes in the capacitance and inductance of this sensor have been recorded, highlighting deleterious structural changes in the sensor itself without any discernible change in the structure being monitored.


Author(s):  
Mohammad Mehdizadeh ◽  
Sabu John ◽  
Chun Wang ◽  
Michael Bannister ◽  
Viktor Verijenko

Structural health monitoring (SHM) systems are increasingly being considered for implementation in aerospace structures. As the application of SHM systems increase, it will be important to define standardized procedures to test durability, reliability, and longevity of the systems. The work presented in this paper is some preliminary work on the integrity of Piezoelectric sensors itself when used to monitor the strains in structures. This study involved the measurements of pertinent electrical properties of these sensors over 100,000 cycles of fatigue loading. Marked changes in the capacitance and inductance of these sensors highlighted deleterious structural changes in the sensor itself without any discernible change in the structure it is supposed to monitor. This might have significant implications in the reliability assessment of sensory data from SHM systems.


Author(s):  
Mohammad Mehdizadeh ◽  
Sabu John ◽  
Chun H. Wang ◽  
Kamran Ghorbani ◽  
Wayne S. T. Rowe

The next-generation design of structural components involves combining multiple functions. The goal of such Multi-functional structures (MFS) is to incorporate various tasks and functions such as structural, electrical and thermal features within a structural housing. The performance and behaviour characteristics of the multi-functional structures can be affected by degradation of any of the sub-components. This can have consequences on the safety, cost, and operational capability. Therefore, the timely and accurate detection, characterization and monitoring of the degradation in these sub-components are major concerns in the operational environment. This calls for Structural Health Monitoring (SHM) as a possible method to improve the safety and reliability of structures and thereby reduce their operational cost. As the application of SHM systems to monitor the status of the MFS increase, it will be increasingly important to determine the durability, reliability, and reparability of the components of SHM system such as sensors. The sensors themselves must be reliable enough so that they do not require replacement at intervals less than the economic lifetime of the structures and components they are monitoring. This is especially important when the deleterious structural changes in the sensor occurs without any discernible change in the structure being monitored In the present work, an assessment is carried out to quantify the degradation in the electric and electromechanical characteristics of polymer composite PZT sensors, under fatigue loading. Changes in the electrical properties of these sensors such as capacitance and inductance have been measured. The strain measurements of the sensor have also been compared to the theoretically calculated strain. The results show that the delineation of structural damage from sensor degradation is possible by monitoring the changes in the key electrical properties of the sensor components such as electrodes and PZT fibers as well as the comparison of experimentally measured and theoretically calculated strain values.


2022 ◽  
Vol 11 (1) ◽  
pp. 1-19
Author(s):  
Abbas Fathi ◽  
Georges El-Saikaly ◽  
Omar Chaallal

Reinforced concrete (RC) structures subjected to cyclic fatigue loading are prone to progressive damage. Among the types of structural damage, those leading to shear deficiencies can result in sudden rupture of structures without warning. Hence, RC structures deficient in shear urgently need retrofitting. The use of externally bonded (EB) fiber-reinforced polymer (FRP) composites presents many advantages and is a very promising technology for shear strengthening of RC structures. This paper encompasses a wide range of research findings related to the interaction between concrete and FRP under fatigue loading. The behavior of the bond between FRP and concrete plays a major role in the failure mode of FRP shear-strengthened structures especially under fatigue. Therefore, it is of interest to characterize the FRP/concrete interaction using appropriate models with respect to the influencing parameters. The paper will first discuss existing design guidelines and considerations related to the fatigue behavior of RC structures. A thorough review of available literature on EB-FRP/concrete bond in shear under cyclic fatigue loading will then be presented, with a focus on proposed bond-slip models and finite element studies of the FRP/concrete interface under fatigue loading.


Author(s):  
W. Kunath ◽  
E. Zeitler ◽  
M. Kessel

The features of digital recording of a continuous series (movie) of singleelectron TV frames are reported. The technique is used to investigate structural changes in negatively stained glutamine synthetase molecules (GS) during electron irradiation and, as an ultimate goal, to look for the molecules' “undamaged” structure, say, after a 1 e/Å2 dose.The TV frame of fig. la shows an image of 5 glutamine synthetase molecules exposed to 1/150 e/Å2. Every single electron is recorded as a unit signal in a 256 ×256 field. The extremely low exposure of a single TV frame as dictated by the single-electron recording device including the electron microscope requires accumulation of 150 TV frames into one frame (fig. lb) thus achieving a reasonable compromise between the conflicting aspects of exposure time per frame of 3 sec. vs. object drift of less than 1 Å, and exposure per frame of 1 e/Å2 vs. rate of structural damage.


2003 ◽  
Vol 785 ◽  
Author(s):  
Seth S. Kessler ◽  
S. Mark Spearing

ABSTRACTEmbedded structural health monitoring systems are envisioned to be an important component of future transportation systems. One of the key challenges in designing an SHM system is the choice of sensors, and a sensor layout, which can detect unambiguously relevant structural damage. This paper focuses on the relationship between sensors, the materials of which they are made, and their ability to detect structural damage. Sensor selection maps have been produced which plot the capabilities of the full range of available sensor types vs. the key performance metrics (power consumption, resolution, range, sensor size, coverage). This exercise resulted in the identification of piezoceramic Lamb wave transducers as the sensor of choice. Experimental results are presented for the detailed selection of piezoceramic materials to be used as Lamb wave transducers.


Entropy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 290
Author(s):  
Maxim Pyzh ◽  
Kevin Keiler ◽  
Simeon I. Mistakidis ◽  
Peter Schmelcher

We address the interplay of few lattice trapped bosons interacting with an impurity atom in a box potential. For the ground state, a classification is performed based on the fidelity allowing to quantify the susceptibility of the composite system to structural changes due to the intercomponent coupling. We analyze the overall response at the many-body level and contrast it to the single-particle level. By inspecting different entropy measures we capture the degree of entanglement and intraspecies correlations for a wide range of intra- and intercomponent interactions and lattice depths. We also spatially resolve the imprint of the entanglement on the one- and two-body density distributions showcasing that it accelerates the phase separation process or acts against spatial localization for repulsive and attractive intercomponent interactions, respectively. The many-body effects on the tunneling dynamics of the individual components, resulting from their counterflow, are also discussed. The tunneling period of the impurity is very sensitive to the value of the impurity-medium coupling due to its effective dressing by the few-body medium. Our work provides implications for engineering localized structures in correlated impurity settings using species selective optical potentials.


2021 ◽  
Vol 23 (9) ◽  
Author(s):  
Andrea Di Matteo ◽  
Gianluca Smerilli ◽  
Edoardo Cipolletta ◽  
Fausto Salaffi ◽  
Rossella De Angelis ◽  
...  

Abstract Purpose of Review To highlight the potential uses and applications of imaging in the assessment of the most common and relevant musculoskeletal (MSK) manifestations in systemic lupus erythematosus (SLE). Recent Findings Ultrasound (US) and magnetic resonance imaging (MRI) are accurate and sensitive in the assessment of inflammation and structural damage at the joint and soft tissue structures in patients with SLE. The US is particularly helpful for the detection of joint and/or tendon inflammation in patients with arthralgia but without clinical synovitis, and for the early identification of bone erosions. MRI plays a key role in the early diagnosis of osteonecrosis and in the assessment of muscle involvement (i.e., myositis and myopathy). Conventional radiography (CR) remains the traditional gold standard for the evaluation of structural damage in patients with joint involvement, and for the study of bone pathology. The diagnostic value of CR is affected by the poor sensitivity in demonstrating early structural changes at joint and soft tissue level. Computed tomography allows a detailed evaluation of bone damage. However, the inability to distinguish different soft tissues and the need for ionizing radiation limit its use to selected clinical circumstances. Nuclear imaging techniques are valuable resources in patients with suspected bone infection (i.e., osteomyelitis), especially when MRI is contraindicated. Finally, dual energy X-ray absorptiometry represents the imaging mainstay for the assessment and monitoring of bone status in patients with or at-risk of osteoporosis. Summary Imaging provides relevant and valuable information in the assessment of MSK involvement in SLE.


2021 ◽  
pp. 1-12
Author(s):  
Haiyan Li ◽  
Zanxia Cao ◽  
Guodong Hu ◽  
Liling Zhao ◽  
Chunling Wang ◽  
...  

BACKGROUND: The ribose-binding protein (RBP) from Escherichia coli is one of the representative structures of periplasmic binding proteins. Binding of ribose at the cleft between two domains causes a conformational change corresponding to a closure of two domains around the ligand. The RBP has been crystallized in the open and closed conformations. OBJECTIVE: With the complex trajectory as a control, our goal was to study the conformation changes induced by the detachment of the ligand, and the results have been revealed from two computational tools, MD simulations and elastic network models. METHODS: Molecular dynamics (MD) simulations were performed to study the conformation changes of RBP starting from the open-apo, closed-holo and closed-apo conformations. RESULTS: The evolution of the domain opening angle θ clearly indicates large structural changes. The simulations indicate that the closed states in the absence of ribose are inclined to transition to the open states and that ribose-free RBP exists in a wide range of conformations. The first three dominant principal motions derived from the closed-apo trajectories, consisting of rotating, bending and twisting motions, account for the major rearrangement of the domains from the closed to the open conformation. CONCLUSIONS: The motions showed a strong one-to-one correspondence with the slowest modes from our previous study of RBP with the anisotropic network model (ANM). The results obtained for RBP contribute to the generalization of robustness for protein domain motion studies using either the ANM or PCA for trajectories obtained from MD.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1537
Author(s):  
Aneta Saletnik ◽  
Bogdan Saletnik ◽  
Czesław Puchalski

Raman spectroscopy is one of the main analytical techniques used in optical metrology. It is a vibration, marker-free technique that provides insight into the structure and composition of tissues and cells at the molecular level. Raman spectroscopy is an outstanding material identification technique. It provides spatial information of vibrations from complex biological samples which renders it a very accurate tool for the analysis of highly complex plant tissues. Raman spectra can be used as a fingerprint tool for a very wide range of compounds. Raman spectroscopy enables all the polymers that build the cell walls of plants to be tracked simultaneously; it facilitates the analysis of both the molecular composition and the molecular structure of cell walls. Due to its high sensitivity to even minute structural changes, this method is used for comparative tests. The introduction of new and improved Raman techniques by scientists as well as the constant technological development of the apparatus has resulted in an increased importance of Raman spectroscopy in the discovery and defining of tissues and the processes taking place in them.


Sign in / Sign up

Export Citation Format

Share Document