Characterization of Honeycomb Polymer Composites for Use in Adaptable Aerospace Structures

Author(s):  
Carson O. Squibb ◽  
Michael K. Philen

Smart materials are unique in their ability to change properties in response to an environmental stimulus. These materials provide promising opportunities for adaptable aerospace structures, where they can be altered to suit their need. In this research, Honeycomb Polymer Composites (HPCs) were investigated as potential materials for this need. HPCs are new materials that consist of a polymer embedded in a honeycomb structure, and exhibit a significantly higher stiffness than the polymer or honeycomb alone. This stiffness amplification is due to the nearly incompressible polymer resisting the volume change within the honeycomb cells. HPC samples were fabricated using an aramid honeycomb, with either silicone or urethane rubber as the matrix materials to fill the honeycomb. Varying polymer stiffness, honeycomb geometry, and testing temperature were all tested to observe the effects on the material properties. The results indicated that the HPCs could be effectively tailored and modeled to suit the need for different effective moduli. This research provides important insight and results in the development of programmable honeycomb polymer composites (PHPCs), which rely on shape memory polymers (SMP) as the internal working polymer.

2009 ◽  
Vol 413-414 ◽  
pp. 211-217
Author(s):  
Xin Long Chang ◽  
Bin Jian ◽  
Chang Ouyang

This paper is devoted to studying influences of matrix/particle interface debonding and particulate size in micromechanical predictions of the effective moduli of particulate reinforced polymer composites (PRPC). The PRPC is regarded as a three-phase composite that includes the matrix, particle and interphase. The formulation for the effective moduli of the interphase is derived by the cohesive zone model, and combined with the Mori-Tanaka method, the micromechanical model for the effective moduli of the PRPC is formulated with emphasis on the effects of the matrix/particle interface, particulate size and volume fraction. The numerical example shows that the interface debonding, the particulate size and volume fraction have significant influences on the effective moduli of PRPC. The effective moduli of the PRPC can be used to characterize its damage degree.


Author(s):  
Yu Kuronuma ◽  
Tomo Takeda ◽  
Yasuhide Shindo ◽  
Fumio Narita ◽  
Zhijuan Wei

This paper presents a study on the strain sensing behavior of carbon nanotube (CNT)-based polymer composites subjected to tensile loading. Tensile tests were performed on CNT/polycarbonate composites and the responses in strain and electrical resistance were measured during the tests. An analytical model incorporating the electrical tunneling effect due to the matrix material between CNTs was also developed to predict the electrical resistance change resulted from deformation. The analytical predictions were compared with the experimental data.


Author(s):  
Heidy Lorena Calambas ◽  
Abril Fonseca ◽  
Dayana Adames ◽  
Yaneli Aguirre-Loredo ◽  
Carolina Caicedo

The preparation of new materials based on starch for the development of biodegradable packaging is increasing, however, the poor properties of this biopolymer for this application causes an area of opportunities for the improvement of water vapour permeability (WVP), mechanical properties, thermal properties, hydrophilicity, water absorption, among others. Hence, starch has been combined with other polymers such as polyvinyl alcohol, which has shown an improvement in the mechanical properties of starch, also, the use of clays suggests that the properties of response to water can be improved. Therefore, in this work, the preparation and characterization of starch-PVA-nanoclay films prepared by solvent casting is reported. The results obtained suggest that the sonication of nanoclay is necessary to reach a good dispersion, which promotes a strong interaction among starch-PVA-nanoclay. In addition, the properties of WVP and mechanical properties of films improved with incorporation of nanoclay, the concentration of 0.5% w/v of nanoclay showed to be the best concentration due to concentrations of 1.0 and 1.5% w/v were poorer than 0.5% w/v. Accordingly, the successful incorporation of nanoclays into the matrix starch-PVA suggests that this material is a good candidate for use as packaging.


Author(s):  
Carmen SALAZAR-HERNÁNDEZ ◽  
Juan Manuel MENDOZA-MIRANDA ◽  
Alfredo CORTES-LÓPEZ ◽  
Luis Fernando GONZÁLEZ-MÉNDEZ

In this paper, composite materials reinforced with natural fibers were studied, such as: Jute (MC-RY) and Manta (MC-RM) as a proposal for new materials for the manufacture of a prototype for automotive defense. The materials were manufactured as laminates and characterized mechanically through stress, bending, impact and Brinell hardness index tests. The results indicated that both reinforcers improved the mechanical strength of the matrix by up to 71%, as well as the impact energy absorption by 14%. The mechanical properties for MC-RY determined in flexure (bending = 56 MPa, Eflection = 4.16 GPa and maximum = 14 mm) were used to perform an impact simulation in two different models created in SolidWork, the results indicated that the MC-RY could be used for the construction of the defense using 3 layers of this material.


2009 ◽  
Vol 6 (1) ◽  
pp. 34-38 ◽  
Author(s):  
A. S. Singha ◽  
Vijay Kumar Thakur

This paper deals with the synthesis of shortSaccaharum Cilliarefibre (SC) reinforced Urea-Formaldehyde (UF) matrix based polymer composites. Present work reveals that mechanical properties such as: tensile strength, compressive strength, flexural strength and wear resistance of the UF matrix increase up to 30% fibre loading(in terms of weight) and then decreases for higher loading when fibers are incorporated into the matrix polymer. Morphological and Thermal studies of the matrix, fibre and short fibre reinforced (SF-Rnf) green composites have also been carried out. The results obtained emphasize the applications of these fibres, as potential reinforcing materials in bio based composites.


Author(s):  
G. Das ◽  
R. E. Omlor

Fiber reinforced titanium alloys hold immense potential for applications in the aerospace industry. However, chemical reaction between the fibers and the titanium alloys at fabrication temperatures leads to the formation of brittle reaction products which limits their development. In the present study, coated SiC fibers have been used to evaluate the effects of surface coating on the reaction zone in the SiC/IMI829 system.IMI829 (Ti-5.5A1-3.5Sn-3.0Zr-0.3Mo-1Nb-0.3Si), a near alpha alloy, in the form of PREP powder (-35 mesh), was used a茸 the matrix. CVD grown AVCO SCS-6 SiC fibers were used as discontinuous reinforcements. These fibers of 142μm diameter contained an overlayer with high Si/C ratio on top of an amorphous carbon layer, the thickness of the coating being ∽ 1μm. SCS-6 fibers, broken into ∽ 2mm lengths, were mixed with IMI829 powder (representing < 0.1vol%) and the mixture was consolidated by HIP'ing at 871°C/0. 28GPa/4h.


Author(s):  
Sachin Tejyan ◽  
Divyesh Sharma ◽  
Brijesh Gangil ◽  
Amar Patnaik ◽  
Tej Singh

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2225
Author(s):  
Aleksandra Kotarska ◽  
Tomasz Poloczek ◽  
Damian Janicki

The article presents research in the field of laser cladding of metal-matrix composite (MMC) coatings. Nickel-based superalloys show attractive properties including high tensile strength, fatigue resistance, high-temperature corrosion resistance and toughness, which makes them widely used in the industry. Due to the insufficient wear resistance of nickel-based superalloys, many scientists are investigating the possibility of producing nickel-based superalloys matrix composites. For this study, the powder mixtures of Inconel 625 superalloy with 10, 20 and 40 vol.% of TiC particles were used to produce MMC coatings by laser cladding. The titanium carbides were chosen as reinforcing material due to high thermal stability and hardness. The multi-run coatings were tested using penetrant testing, macroscopic and microscopic observations, microhardness measurements and solid particle erosive test according to ASTM G76-04 standard. The TiC particles partially dissolved in the structure during the laser cladding process, which resulted in titanium and carbon enrichment of the matrix and the occurrence of precipitates formation in the structure. The process parameters and coatings chemical composition variation had an influence on coatings average hardness and erosion rates.


2021 ◽  
pp. 002199832110055
Author(s):  
Zeeshan Ahmad ◽  
Sabah Khan

Alumnium alloy LM 25 based composites reinforced with boron carbide at different weight fractions of 4%, 8%, and 12% were fabricated by stir casting technique. The microstructures and morphology of the fabricated composites were studied by scanning electron microscopy and energy dispersive spectroscopy. Elemental mapping of all fabricated composites were done to demonstrate the elements present in the matrix and fabricated composites. The results of microstructural analyses reveal homogenous dispersion of reinforcement particles in the matrix with some little amount of clustering found in composites reinforced with 12% wt. of boron carbide. The mechanical characterization is done for both alloy LM 25 and all fabricated composites based on hardness and tensile strength. The hardness increased from 13.6% to 21.31% and tensile strength 6.4% to 22.8% as reinforcement percentage of boron carbide particles increased from 0% to 12% wt. A fractured surface mapping was also done for all composites.


Sign in / Sign up

Export Citation Format

Share Document