The Tribological and Chemical Analysis of Top Ring Zone Samples of Fully Formulated Oil Taken From a Four Stroke Gasoline Engine

Author(s):  
Peter M. Lee ◽  
M. Priest ◽  
M. S. Stark ◽  
J. J. Wilkinson ◽  
J. R. Lindsay-Smith ◽  
...  

With increasing pressure on engine oil manufacturers to extend oil drain intervals and reduce fuel consumption, whilst changing the composition of fully formulated oils to meet the new CEC, ILSAC and OEM specifications, there is an ever increasing need to understand the effect of oil degradation on the operating conditions and tribological performance of engines [1]. This work samples oil from the rear of the top piston ring of an engine during the first 15 minutes from cold start and operating at steady state under three different loads. These samples, used 40 hour sump oil and fresh oil have been subjected to tribological tests and chemical analysis.

Author(s):  
P. M. Lee ◽  
M. Priest ◽  
M. S. Stark ◽  
J. J. Wilkinson ◽  
J. R. Lindsay Smith ◽  
...  

With increasing pressure on engine oil manufacturers to extend oil drain intervals and reduce fuel consumption, whilst changing the composition of fully formulated oils to meet new CEC, ILSAC and OEM specifications, there is ever increasing need to understand the effect of oil degradation on the operating conditions and tribological performance of engines. This poster presents mechanical changes made to a single cylinder research engine to enable the study of lubricant degradation, its transport and how this links to piston assembly tribology. A summary of the research undertaken using these changes and a sample of results obtained to date are also presented.


2003 ◽  
Vol 125 (4) ◽  
pp. 1081-1089 ◽  
Author(s):  
Y. Piao ◽  
S. D. Gulwadi

The role of cylinder bore shapes in engine performance has been the subject of several studies in recent years. In particular, the influence of bore distortion on oil consumption under high speed conditions has generated significant interest. In this paper, the effect of an axial bore profile on radial dynamics of a ring is investigated. Radial ring motions within grooves due to the axial bore profile can generate significant inertial effects and also have an impact on ring end-gap sizes and lubrication conditions at the ring-liner interfaces. The magnitude of such effects is dependent on the ring-pack configuration, engine operating conditions (speed and load) and axial bore profile details. These issues are investigated in this study due to their implication on engine oil consumption, friction and blow-by. The authors have developed an analytical expression to account for the effects of radial ring inertia due to an axial bore profile for implementation in a piston ring-pack simulation tool RINGPAK. Simulation results from a gasoline engine study are presented to illustrate the effects of engine speeds, ring tensions, and characteristics of axial bore profiles on ring radial dynamics and ring-liner lubrication. Relevant qualitative comparisons are made to experimental measurements available in the literature.


Author(s):  
Y. Piao ◽  
S. D. Gulwadi

The role of cylinder bore shapes in engine performance has been the subject of several studies in recent years. In particular, the influence of bore distortion on oil consumption under high speed conditions has generated significant interest. In this paper, the effect of an axial bore profile on radial dynamics of a ring is investigated. Radial ring motions within grooves due to the axial bore profile can generate significant inertial effects and also have an impact on ring end-gap sizes and lubrication conditions at the ring-liner interfaces. The magnitude of such effects is dependent on the ring-pack configuration, engine operating conditions (speed and load) and axial bore profile details. These issues are investigated in this study due to their implication on engine oil consumption, friction and blow-by. The authors have developed an analytical expression to account for the effects of radial ring inertia due to an axial bore profile for implementation in a piston ring–pack simulation tool RINGPAK. Simulation results from a gasoline engine study are presented to illustrate the effects of engine speeds, ring tensions and characteristics of axial bore profiles on ring radial dynamics and ring-liner lubrication. Relevant qualitative comparisons are made to experimental measurements available in the literature.


Author(s):  
SR Bewsher ◽  
R Turnbull ◽  
M Mohammadpour ◽  
R Rahmani ◽  
H Rahnejat ◽  
...  

The paper presents transient thermal-mixed-hydrodynamics of piston compression ring–cylinder liner conjunction for a 4-cylinder 4-stroke gasoline engine during a part of the New European Drive Cycle (NEDC). Analyses are carried out with and without cylinder de-activation technology in order to investigate its effect upon the generated tribological conditions. In particular, the effect of cylinder deactivation upon frictional power loss is studied. The predictions show that overall power losses in the piston–ring cylinder system worsen by as much as 10% because of the increased combustion pressures and liner temperatures in the active cylinders of an engine operating under cylinder deactivation. This finding shows the down-side of this progressively employed technology, which otherwise is effective in terms of combustion efficiency with additional benefits for operation of catalytic converters. The expounded approach has not hitherto been reported in literature.


Author(s):  
Kenta Tomizawa ◽  
Akemi Ito

Abstract Oil consumption of an engine causes particulate matter, poisoning catalysts and sometimes abnormal combustion like pre-ignition. One of the factors of oil consumption is oil transport via a piston ring-gap. Coincident of ring-gaps at a same position may cause an increase in oil consumption. In this research, the effect of coincident the ring gaps on oil consumption was measured using with/without the a stopper pin for the ring rotation by sulfur tracer method. A lot of spikes was found in the wave form of sulfur concentrate for the rings without the stopper pin, and higher value of oil consumption was simultaneously measured. Then the force which caused ring rotation (hereafter ‘rotational force’) was measured by a newly developed method. A cantilever was installed in the ring gap, and the strain gauges were pasted on the cantilever. Therefore, the rotational force was measured as the bending stress of the cantilever. It was found that the rotational force showed a periodic wave form against the crank angle. Furthermore, it was also found that the amplitude of the rotational force was strong affected by the engine operating conditions. The rotational force was also affected by the gap position. It was assumed that not only the piston lateral motion but also the cylinder bore shape affected the rotational force. The mechanism of generating the rotational force is the future subject.


Author(s):  
Seunghyup Shin ◽  
Sangyul Lee ◽  
Minjae Kim ◽  
Jihwan Park ◽  
Kyoungdoug Min

Recently, deep learning has played an important role in the rise of artificial intelligence, and its accuracy has gained recognition in various research fields. Although engine phenomena are very complicated, they can be predicted with high accuracy using deep learning because they are based on the fundamentals of physics and chemistry. In this research, models were built with deep neural networks for gasoline engine prediction. The model consists of two sub-models. The first predicts the knock occurrence, and the second predicts performance, combustion, and emissions. This includes maximum cylinder pressure, crank angle at maximum cylinder pressure, maximum pressure rise rate, and brake mean effective pressure, brake-specific fuel consumption, brake-specific nitrogen oxides, and brake-specific carbon oxide, which are representative results of the engine (for normal combustion cases without knock). Model input parameters were selected considering engine operating conditions, and physically measurable sensor values. For test cases, the accuracy of the first model for knock classification is 99.0%, and the coefficient of determination (R2) values for the second model are all above 0.99. Test times of both models were approximately 2 ms. The robustness of all the models was verified using K-fold cross-validation. A sensitivity study of accuracy, according to the amount of training utilized, was also conducted to determine how many data points are required to effectively train the deep learning model. Accordingly, a deep learning approach was applied to predict the steady-state conditions of a gasoline engine. Achieved model accuracies and robustness proved deep learning to be an effective modeling approach, and test time was recognized to be able to apply for the real-time prediction. The sensitivity analysis can be applied for the preliminary study to define the number of experimental points for the deep learning model.


2011 ◽  
Vol 128-129 ◽  
pp. 620-624 ◽  
Author(s):  
Hai Bo Chen ◽  
Zhao Cheng Yuan ◽  
Wei Lu ◽  
Jin Lei Cai

During the design process of Internal Combustion (IC) engine, what is often taken into consideration is the temperature of the important heated parts. The temperature distributions are the primary causes of thermal fatigue in the engine. A combined experimental and analytical approach was followed in this work to study temperature distributions of gasoline engine under steady-state and transient operation condition. Experimental studies were conducted to measure temperatures under a series of steady-state and transient operating conditions. A comparison of the steady-state and transient measurements has been made and the character of transient temperature distributions is concluded. Subsequently, a calculation analysis was conducted to predict the detailed temperature distributions. Solid-Fluid whole conjugated heat transfer method is applied in the numerical calculation, which can take the mutual influence both the fluid flow and the heat transfer into account. The predicted temperatures met well with the measurements. Furthermore, the predicted location of coolant boiling phenomena in the water jacket can be made certain. This can give some suggests for the further observation experiment of boiling heat transfer.


2010 ◽  
Vol 154-155 ◽  
pp. 220-225 ◽  
Author(s):  
Bo Zhang ◽  
Yi Xu ◽  
Bao Sen Zhang ◽  
Bin Shi Xu

The serpentine is a kind of phyllosilicates whose crystal structure leads to a tetrahedral-octahedral (TO) structure. Because of its unique crystal structure, micro-nano serpentine powders (MSP) in liquid lubricants can show a good tribological performance, so that lots of scholars had started extensive and in-depth studied on its tribological performance. In this research, the raw material which is Xiuyan serpentine produced from Liaoning province, China, had been made into powders with particle average diameter about 0.5 μm. The friction optimized content of MSP in the lubricant oil was studied and it were examined that the loads’ and friction pairs move velocity’s changes had effect to tribological performance in friction course. The results show that the optimal content of MSP in gasoline engine oil SJ10W-40 is 0.5 mass%, under this condition, friction coefficient can be reduced to 0.03, and the friction-reduction performance can been enhanced by 73.3%, so that the lubrication state is that boundary lubrication changes into mixed lubrication. Disclosing the tribological rule of MSP in lubricant oil under the condition of loads and the move velocity of friction pairs changing, and discovering MSP addictive to lubricant oil can extended friction pairs with high move speed and heavy loads working hours, all that can provide a theoretical basis to promote engineering.


2019 ◽  
Vol 25 (2) ◽  
pp. 294-313 ◽  
Author(s):  
Kurt Azevedo ◽  
Daniel B. Olsen

Purpose The purpose of this paper is to determine and describe the effect of oil degradation on the engine of a 20-ton class excavator operating in Latin America. Design/methodology/approach The research parameters include: a specific engine class and equipment, the John Deere PowerTech Plus 6068 Tier 3 diesel engine that powers the 20-ton class excavator; identical OSA3 oil analysis laboratory equipment in 11 target countries in Latin America was employed to analyze oil samples; and the same sampling scope and method were followed for each oil sample. Findings The research results indicated that at 500 h of use, 73.4 percent of the oil sample results indicated that soot accumulation was a significant problem. When associating the engine oil contamination with the environment risk drivers: altitude and diesel quality have the greatest impact on iron readings; bio-diesel impacts copper; and precipitation and poor diesel quality are associated with silicon levels. Practical implications Due to diverse machine operating conditions, research offers an accurate global representation. Because there is an exponential count of particles as oil use approaches 250 h, the interval of engine maintenance (oil change) for machinery operating under similar conditions should not exceed 250 h of use. Originality/value The main contribution of this paper will help machinery final users and manufacturers to implement mitigation strategies to improve engine durability in countries with similar operating conditions.


Sign in / Sign up

Export Citation Format

Share Document