Two-phase coating flows of a non-Newtonian fluid with linearly varying temperature at the boundaries—an exact solution

2017 ◽  
Vol 56 (7) ◽  
pp. 075104 ◽  
Author(s):  
Zeeshan Khan ◽  
Muhammad Altaf Khan ◽  
Ilyas Khan ◽  
Saeed Islam ◽  
Nasir Siddiqui
Author(s):  
Mubbashar Nazeer ◽  
Farooq Hussain ◽  
Laiba Shabbir ◽  
Adila Saleem ◽  
M. Ijaz Khan ◽  
...  

In this paper, the two-phase flow of non-Newtonian fluid is investigated. The main source of the flow is metachronal waves which are caused by the back and forth motion of cilia attached to the opposite walls of the channel. Magnetohydrodynamics (MHD) of Casson fluid experience the effects of transverse magnetic fields incorporated with the slippery walls of the channel. Thermal effects are examined by taking Roseland’s approximation and application of thermal radiation into account. The heat transfer through the multiphase flow of non-Newtonian fluid is further, compared with Newtonian bi-phase flow. Since the main objective of the current study is to analyze heat transfer through an MHD multiphase flow of Casson fluid. The two-phase heated flow of non-Newtonian fluid is driven by cilia motion results in nonlinear and coupled differential equations which are transformed and subsequently, integrated subject to slip boundary conditions. A closed-form solution is eventually obtained form that effectively describes the flow dynamics of multiphase flow. A comprehensive parametric study is carried out which highlights the significant contribution of pertinent parameters of the heat transfer of Casson multiphase flow. It is inferred that lubricated walls and magnetic fields hamper the movement of multiphase flow. It is noted that a sufficient amount of additional thermal energy moves into the system, due to the Eckert number and Prandtl number. While thermal radiation acts differently by expunging the heat transfer. Moreover, Casson multiphase flow is a more suitable source of heat transfer than Newtonian multiphase flow.


2006 ◽  
Author(s):  
Shriram Pillapakkam ◽  
Pushpendra Singh ◽  
Denis L. Blackmore ◽  
Nadine Aubry

A finite element code based on the level set method is developed for performing two and three dimensional direct numerical simulations (DNS) of viscoelastic two-phase flow problems. The Oldroyd-B constitutive equation is used to model the viscoelastic liquid and both transient and steady state shapes of bubbles in viscoelastic buoyancy driven flows are studied. The influence of the governing dimensionless parameters, namely the Capillary number (Ca), the Deborah Number (De) and the polymer concentration parameter c, on the deformation of the bubble is also analyzed. Our simulations demonstrate that the rise velocity oscillates before reaching a steady value. The shape of the bubble, the magnitude of velocity overshoot and the amount of damping depend mainly on the parameter c and the bubble radius. Simulations also show that there is a critical bubble volume at which there is a sharp increase in the bubble terminal velocity as the increasing bubble volume increases, similar to the behavior observed in experiments. The structure of the wake of a bubble rising in a Newtonian fluid is strikingly different from that of a bubble rising in a viscoelastic fluid. In addition to the two recirculation zones at the equator of the bubble rising in a Newtonian fluid, two more recirculation zones exist in the wake of a bubble rising in viscoelastic fluids which influence the shape of a rising bubble. Interestingly, the direction of motion of the fluid a short distance below the trailing edge of a bubble rising in a viscoelastic fluid is in the opposite direction to the direction of the motion of the bubble, thus creating a “negative wake”. In this paper, the velocity field in the wake of the bubble, the effect of the parameters on the velocity field and their influence on the shape of the bubble are also investigated.


2013 ◽  
Vol 18 (1) ◽  
pp. 249-257
Author(s):  
K.R. Malaikah

We consider a two-phase Hele-Shaw cell whether or not the gap thickness is time-dependent. We construct an exact solution in terms of the Schwarz function of the interface for the two-phase Hele-Shaw flow. The derivation is based upon the single-valued complex velocity potential instead of the multiple-valued complex potential. As a result, the construction is applicable to the case of the time-dependent gap. In addition, there is no need to introduce branch cuts in the computational domain. Furthermore, the interface evolution in a two-phase problem is closely linked to its counterpart in a one-phase problem


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Puyang Gao

In this paper, we develop a new computational framework to investigate the sloshing free surface flow of Newtonian and non-Newtonian fluids in the rectangular tanks. We simulate the flow via a two-phase model and employ the fixed unstructured mesh in the computation to avoid the mesh distortion and reconstruction. As for the solution of Navier–Stokes equation, we utilize the SUPG finite element method based on the splitting scheme. The same order interpolation functions are then used for velocity and pressure. Moreover, the moving interface is captured via the concise level set method. We take advantage of the implicit discontinuous Galerkin method to handle the solution of level set and its reinitialization equations. A mass correction technique is also added to ensure the mass conservation property. The dam break-free surface flow is simulated firstly to demonstrate the validity of our mathematical model. In addition, the sloshing Newtonian fluid in the tank with flat and rough bottoms is considered to illustrate the feasibility and robustness of our computational scheme. Finally, the development of free surface for non-Newtonian fluid is also studied in the two tanks, and the influence of power-law index on the sloshing fluid flow is analyzed.


Author(s):  
Wei-Tao Wu ◽  
Nadine Aubry ◽  
James F. Antaki ◽  
Mehrdad Massoudi

It is known that in large vessels (whole) blood behaves as a Navier-Stokes (Newtonian) fluid; however, in a vessel whose characteristic dimension (e.g., a diameter in the range of 20 to 500 microns) is about the same size as the characteristic size of the blood cells, blood behaves as a non-Newtonian fluid, exhibiting complex phenomena, such as shear-thinning, stress relaxation, the Fahraeus effect, the plasma-skimming, etc.. Using the framework of mixture theory an Eulerian-Eulerian two phase model is applied to model blood flow, where the plasma is treated as Newtonian fluid and the RBCs are treated as shear thinning fluid.[5]


Author(s):  
Faraj Ben Rajeb ◽  
Mohamed Odan ◽  
Amer Aborig ◽  
Syed Imtiaz ◽  
Yan Zhang ◽  
...  

Abstract Two-phase flow of gas/Newtonian and gas/non-Newtonian fluid through pipes occurs frequently in the chemical industry as well as in petroleum refining. Extensive experimental and theoretical research has been carried out on these systems in order to better understand their behaviour under different conditions regarding pressure, temperature and mixture concentrations. In this study, experimental apparatuses are used to investigate two-phase flow of gas/liquid systems through pipes. Air is used as the gas in the experiments, while water is used as the Newtonian fluid and Xanthan gum as the non-Newtonian fluid. The objectives of the study are to compare pressure drops when the same gas flows simultaneously with Newtonian and non-Newtonian fluids through tubes. The comparison here is between experimental pressure drops and estimated pressure drops, based on available empirical correlations for gas/Newtonian and gas/non-Newtonian flow. The trend exhibited by the pressure drops in both systems helps us to better understand the relationship between mixture flow pressure drops in Newtonian and non-Newtonian fluids and thereby develop a new experimental model. The tube diameter for the flow loop is 3/4 inch and the flow type ranges from transient to turbulent.


1973 ◽  
Vol 95 (4) ◽  
pp. 470-476 ◽  
Author(s):  
J. M. Gonzalez-Santalo ◽  
R. T. Lahey

One of the important design considerations in modern water-cooled nuclear reactors is their thermal performance during hypothetical accident situations. However, an accurate analysis of the system thermal-hydraulics is required before the thermal margins can be appraised. In this paper, an analysis based on the method of characteristics has been developed by which the exact solution to flow decay transients in homogeneous two-phase systems can be obtained. The exact solution presented yields the system flow and quality at each point in space and time during an exponential flow decay transient. These parameters can then be combined with an appropriate CHF correlation to predict the occurrence of transient CHF.


Sign in / Sign up

Export Citation Format

Share Document