Highly sensitive monolithic optoelectronic receiver with large-area avalanche photodiode for optical wireless communication at low data rates

2021 ◽  
Vol 60 (07) ◽  
Author(s):  
Christoph Gasser ◽  
Horst Zimmermann
Photonics ◽  
2021 ◽  
Vol 8 (11) ◽  
pp. 467
Author(s):  
Chao Li ◽  
Zichen Liu ◽  
Daomin Chen ◽  
Xiong Deng ◽  
Fulong Yan ◽  
...  

In this paper, we propose a high-sensitivity long-reach underwater optical wireless communication (UOWC) system with an Mbps-scale data rate. Using a commercial blue light-emitting diode (LED) source, a photon counting receiver, and return-to-zero on–off keying modulation, a receiver sensitivity of −70 dBm at 7% FEC limit is successfully achieved for a 5 Mbps intensity modulation direct detection UOWC system over 10 m underwater channel. For 1 Mbps and 2 Mbps data rates, the receiver sensitivity is enhanced to −76 dBm and −74 dBm, respectively. We further investigate the system performance under different water conditions: first type of seawater (c = 0.056 m−1), second type (c = 0.151 m−1), and third type (c = 0.398 m−1). The maximum distance of the 2 Mbps signal can be extended up to 100 m in the first type of seawater.


Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2261 ◽  
Author(s):  
Giuseppe Schirripa Spagnolo ◽  
Lorenzo Cozzella ◽  
Fabio Leccese

Underwater Optical Wireless Communication (UOWC) is not a new idea, but it has recently attracted renewed interest since seawater presents a reduced absorption window for blue-green light. Due to its higher bandwidth, underwater optical wireless communications can support higher data rates at low latency levels compared to acoustic and RF counterparts. The paper is aimed at those who want to undertake studies on UOWC. It offers an overview on the current technologies and those potentially available soon. Particular attention has been given to offering a recent bibliography, especially on the use of single-photon receivers.


Author(s):  
Rajbir Singh

Optical networks are bandwidth efficient networks are used for long haul communication providing seamless data transfer. For high speed data transmission in open space between different satellites, Inter-satellite Optical wireless communication (IsOWC) is widely used .In this paper we have evaluated the performance of IsOWC communication link for high speed data transmission .The performance of the system is evaluated on the basis of qualitative parameters such as Q-factor and BER using optisystem simulator.


Author(s):  
SHARMA POOJA ◽  
SHRIVASTAVA SHARAD MOHAN ◽  
MISHRA ANUJA ◽  
AGRAWAL PRACHI ◽  
PARGANIHA RAHUL ◽  
...  

Electronics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 632
Author(s):  
Xiaozheng Wang ◽  
Minglun Zhang ◽  
Hongyu Zhou ◽  
Xiaomin Ren

The performance of the underwater optical wireless communication (UOWC) system is highly affected by seawater´s inherent optical properties and the solar radiation from sunlight, especially for a shallow environment. The multipath effect and degradations in signal-to-noise ratio (SNR) due to absorption, scattering, and ambient noises can significantly limit the viable communication range, which poses key challenges to its large-scale commercial applications. To this end, this paper proposes a unified model for underwater channel characterization and system performance analysis in the presence of solar noises utilizing a photon tracing algorithm. Besides, we developed a generic simulation platform with configurable parameters and self-defined scenarios via MATLAB. Based on this platform, a comprehensive investigation of underwater channel impairments was conducted including temporal and spatial dispersion, illumination distribution pattern, and statistical attenuation with various oceanic types. The impact of ambient noise at different operation depths on the bit error rate (BER) performance of the shallow UOWC system was evaluated under typical specifications. Simulation results revealed that the multipath dispersion is tied closely to the multiple scattering phenomenon. The delay spread and ambient noise effect can be mitigated by considering a narrow field of view (FOV) and it also enables the system to exhibit optimal performance on combining with a wide aperture.


Sign in / Sign up

Export Citation Format

Share Document