Low-cost large-area high-resolution full-color ac plasma cockpit displays

1994 ◽  
Author(s):  
Peter S. Friedman ◽  
Ray A. Stoller
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jinyang Zhao ◽  
Lixuan Chen ◽  
Dongze Li ◽  
Zhiqing Shi ◽  
Pai Liu ◽  
...  

AbstractColloidal quantum dot (QD) emitters show great promise in the development of next-generation displays. Although various solution-processed techniques have been developed for nanomaterials, high-resolution and uniform patterning technology amicable to manufacturing is still missing. Here, we present large-area, high-resolution, full-color QD patterning utilizing a selective electrophoretic deposition (SEPD) technique. This technique utilizes photolithography combined with SEPD to achieve uniform and fast fabrication, low-cost QD patterning in large-area beyond 1,000 pixels-per-inch. The QD patterns only deposited on selective electrodes with precisely controlled thickness in a large range, which could cater for various optoelectronic devices. The adjustable surface morphology, packing density and refractive index of QD films enable higher efficiency compared to conventional solution-processed methods. We further demonstrate the versatility of our approach to integrate various QDs into large-area arrays of full-color emitting pixels and QLEDs with good performance. The results suggest a manufacture-viable technology for commercialization of QD-based displays.


Author(s):  
Otto Huisman ◽  
Arash Gharibi

One of the major concerns for pipeline operators is to efficiently monitor the events happening over the pipeline corridor, or right-of-way (ROW). Monitoring of the ROW is an important part of ensuring the safe and efficient transportation of oil and gas. Events occurring within this zone require rapid assessment and, if necessary, mitigation. These events could be physical intrusions such as encroachment from growing settlements, impact of vegetation, pipeline leakage or geo-environmental hazards. Analysis of satellite imagery can provide an efficient and low cost solution to access and quantify change across the ROW. Examining these events over a periodic interval requires implementation of specific methods that can support the on-going monitoring and decision making practices. In this context, satellite remote sensing images can provide a low cost and efficient solution for monitoring the physical and environmental impacts over the ROW of pipeline system. This paper reports on the development of a methodological approach for environmental change analysis using high resolution satellite images that can help decision making in pipeline systems. Analysis results and maps produced during this work provide an insight into landcover change over the study area and expected to support in on-going pipeline management practices. Two methods, Vegetation index differencing and post classification comparison have been implemented to identify change areas in the Taranaki region of the North Island of New Zealand. Vegetation index differencing with NDVI shows increase or decrease of overall vegetation within the study area. Special focus was given on large area increase and decrease with area threshold value above 0.2 hectare. Detailed analysis of change was conducted with post classification comparison method that uses land cover classification results of year 2010 and 2013. An overall change of 10% has been observed throughout the study area with large area change of approximately 5%. Results obtained from post classification comparison method were further analyzed with 6 focus areas and compared with the existing soil data and rainfall data. The methods adopted during this study are expected to provide a base for environmental change analysis in similar pipeline corridors to support decision making.


2005 ◽  
Vol 871 ◽  
Author(s):  
Hongzheng Jin ◽  
James C. Sturm

AbstractAn important challenge for Organic Light-Emitting Diodes (OLEDs) manufacturing is patterning method of the organic materials used for different colors. In this talk, a Large-Area wet Micro-Printing (LAMP) technique is proposed and demonstrated for organic device patterning. A printing plate is first prepared by surface engineering so that a designed surface energy pattern is achieved. The printing plate is then coated with “ink,” brought into contact the device substrate, and the “ink” is transferred. With this approach, the red (R), green (G) blue (B) sub-pixel arrays needed in a full-color display can be printed in three successive steps, one step for each color. Both single-color pixel arrays and R, G, B sub-pixel arrays have been patterned as a demonstration of the feasibility of this method. The technique has the potential advantages of low-cost and high-throughput and it avoids some of the practical problems associated with the design and operation of an ink-jet apparatus.


2017 ◽  
Vol 19 (1) ◽  
pp. 48-55 ◽  
Author(s):  
Ken Walczak ◽  
Geza Gyuk ◽  
Andrew Kruger ◽  
Enoch Byers ◽  
Sigi Huerta

The NITESat (Night Imaging and Tracking Experiment Satellite) mission is a 2U CubeSat satellite designed for nighttime Earth imaging to quantify and characterize light pollution across the Midwestern United States. It is accompanied and supported by an array of ground-based light pollution observing stations called GONet (Ground Observing Network). NITESat is a pilot mission testing the potential for a simple and inexpensive (<$500,000) satellite to deliver high-resolution, three-color regional data of artificial light at night. In addition, GONet will form the core of an educational outreach program by establishing an array of all-sky monitors covering the imaging region of the satellite with 20+ full sky light pollution citizen-operated stations. This will provide synchronized data coinciding with the NITESat overpasses as well as providing near continuous night sky quality monitoring. If the initial mission is a success, the potential exists to expand the program into a low cost constellation of satellites capable of delivering global coverage. NITESat is being designed, built and will be operated by the Far Horizons program at the Adler Planetarium in Chicago, Illinois. Far Horizons is a student and volunteer centered program offering hands-on engineering and scientific research opportunities for education.


Author(s):  
R. G. C. J. Kapilaratne ◽  
S. Kaneta

Abstract. Flooding is considered as one of the most devastated natural disasters due to its adverse effect on human lives as well as economy. Since more population concentrate towards flood prone areas and frequent occurrence of flood events due to global climate change, there is an urgent need in remote sensing community for faster and reliable inundation mapping technologies to increase the preparedness of population and reduce the catastrophic impact. With the recent advancement in remote sensing technologies and integration capability of deep learning algorithms with remote sensing data makes faster mapping of large area is feasible. Therefore, this study attempted to explore a faster and low cost solution for flood area extraction by integrating convolution neural networks (CNNs) with high resolution (1.5 m) SPOT satellite images. By consider the system requirement as a measure of cost, capabilities (speed and accuracy) of a deeper (ResNet101) and a shallower (MobileNetV2) CNNs on flood mapping were examined and compared. The models were trained and tested with satellite images captured during several flood events occurred in Japan. It is observed from the results that ResNet101 obtained better flood area mapping accuracy than MobileNetV2. Whereas, MobileNetV2 is having much higher capabilities in faster mapping in 0.3 s/km2 with a competitive accuracy and minimal system requirements than ResNet101.


2010 ◽  
Vol 139-141 ◽  
pp. 1562-1565
Author(s):  
Xi Qiu Fan

Tradition lithographic techniques to produce micrlens array are complicated and time consuming. Due to the capability to replicate nanostructures repeatedly in a large area with high resolution and uniformity, hot embossing has been recognized as one of the promising approaches to fabricate microlens array with high throughput and low cost. This paper introduces processes to realize fabricating microlens array in mass production by direct hot embossing on silicon substrate. The mold is fabricated by multi-photolithography and etching steps and polymethyl methacrylate (PMMA) is chosen as the resist. Processes include coating, heating, pressing, etc. Fidelity and optical performance of the embossed microlens array were measured. High fidelity and fine optical performance of the embossed microlens array demonstrate the possibility of hot embossing to fabricate microlens array in mass production.


Nanomaterials ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 609 ◽  
Author(s):  
Cecilia Masciullo ◽  
Agnese Sonato ◽  
Filippo Romanato ◽  
Marco Cecchini

Among soft lithography techniques, Thermal Nanoimprint Lithography (NIL) is a high-throughput and low-cost process that can be applied to a broad range of thermoplastic materials. By simply applying the appropriate pressure and temperature combination, it is possible to transfer a pattern from a mold surface to the chosen material. Usually, high-resolution and large-area NIL molds are difficult to fabricate and expensive. Furthermore, they are typically made of silicon or other hard materials such as nickel or quartz for preserving their functionality. Nonetheless, after a large number of imprinting cycles, they undergo degradation and become unusable. In this paper, we introduce and characterize an innovative two-step NIL process based on the use of a perfluoropolyether (PFPE) intermediate mold to replicate sub-100 nm features from a silicon mold to the final thermoplastic material. We compare PFPE elastomeric molds with molds made of the standard polydimethylsiloxane (PDMS) elastomer, which demonstrates better resolution and fidelity of the replica process. By using PFPE intermediate molds, the nanostructured masters are preserved and the throughput of the process is significantly enhanced.


2004 ◽  
Vol 846 ◽  
Author(s):  
Hee Hyun Lee ◽  
Etienne Menard ◽  
Nancy G. Tassi ◽  
John A. Rogers ◽  
Graciela B. Blanchet

ABSTRACTLow cost fabrication is key to the successful introduction of organic electronics and roll to roll manufacturing processes. We propose here that extending flexography into the micron size resolution regime may provide an economical commercialization path for plastic devices. Flexography is a high-speed technique commonly used for printing onto very large area flexible substrates.[1] Although low resolution and poor registration are characteristics of today's flexographic process, it has many similarities with soft lithographic techniques. This work shows that large, (12”×12”) high-resolution printing plates appropriate for use on small tag and label flexographic presses can be prepared using simple and inexpensive flexographic compatible processes. We illustrate the use of these plates for three representative soft lithographic processes: microcontact printing, replica molding, and phase shift lithography.


Sign in / Sign up

Export Citation Format

Share Document