Image fiber-based miniature multi-functional suspended solid sensor

Author(s):  
Pengfei Qi ◽  
Lie Lin ◽  
Weiwei Liu ◽  
Rui Huang ◽  
Qingheng Zhang ◽  
...  
Keyword(s):  
2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Pengfei Qi ◽  
Lie Lin ◽  
Rui Huang ◽  
Sicong Zhao ◽  
Haolin Tian ◽  
...  

al-Kimiya ◽  
2020 ◽  
Vol 7 (1) ◽  
pp. 47-54
Author(s):  
Hesty Nuur Hanifah ◽  
Ginayanti Hadisoebroto ◽  
Turyati Turyati ◽  
Ineu Sintia Anggraeni

Koagulasi merupakan tahap awal dalam proses pengolahan limbah cair. Salah satu industri yang berpotensi untuk menimbulkan pencemaran air bila limbah cairnya tidak dikelola dengan baik adalah industri farmasi. Cangkang telur ayam ras dan kulit pisang kepok merupakan limbah padat yang belum termanfaatkan, padahal kedua bahan tersebut mengandung zat-zat yang bisa membantu dalam proses koagulasi. Oleh karena itu, peneliti tertarik untuk mengembangkan biokoagulan dari cangkang telur ayam ras dan kulit pisang kepok. Penelitian ini bertujuan untuk mengetahui efektivitas dari cangkang telur ayam ras dan kulit pisang kepok sebagai biokoagulan dalam menurunkan nilai turbiditas, TDS (Total Disolved Solid) dan TSS (Total Suspended Solid) dari limbah cair industri farmasi. Alat yang digunakan dalam penelitian ini adalah jartest. Sampel air limbah yang digunakan dalam percobaan ini yaitu sampel air limbah industri farmasi dari PT Sinkona Indonesia Lestari. Berdasarkan hasil penelitian  menunjukkan bahwa biokoagulan cangkang telur ayam mempunyai dosis optimum yaitu 50 g/500 mL dan pada pH optimum 8 terjadi penurunan turbiditas sebesar 81,18%, TDS sebesar 24,3% dan TSS sebesar 82,05%. Sedangkan  biokoagulan kulit pisang kepok mempunyai dosis optimum 5 g/500 ml dan pada pH optimum 2 terjadi penurunan  turbiditas sebesar   94,9%, TDS 51,3% dan TSS  83,2%. Dari data tersebut bisa disimpulkan bahwa cangkang telur ayam ras dan kulit pisang kepok bisa dimanfaatkan sebagai biokoagulan untuk pengolahan limbah cair dari industri farmasi.


2008 ◽  
Vol 59 (5) ◽  
Author(s):  
Mirela Dulama ◽  
Nicoleta Deneanu ◽  
Cristian Dulama ◽  
Margarit Pavelescu

The paper presents the experimental tests concerning the treatment by membrane techniques of radioactive aqueous waste. Solutions, which have been treated by using the bench-scale installation, were radioactive simulated secondary wastes from the decontamination process with modified POD. Generally, an increasing of the retention is observed for most of the contaminants in the reverse osmosis experiments with pre-treatment steps. The main reason for taking a chemical treatment approach was to selectively remove soluble contaminants from the waste. In the optimization part of the precipitation step, several precipitation processes were compared. Based on this comparison, mixed [Fe(CN)6]4-/Al3+/Fe2+ was selected as a precipitation process applicable for precipitation of radionuclides and flocculation of suspended solid. Increased efficiencies for cesium radionuclides removal were obtained in natural zeolite adsorption pre-treatment stages and this was due to the fact that volcanic tuff used has a special affinity for this element. Usually, the addition of powdered active charcoal serves as an advanced purifying method used to remove organic compounds and residual radionuclides; thus by analyzing the experimental data (for POD wastes) one can observe a decreasing of about 50% for cobalt isotopes subsequently to the active charcoal adsorption.. The semipermeable membranes were used, which were prepared by the researchers from the Research Center for Macromolecular Materials and Membranes, Bucharest. The process efficiency was monitored by gamma spectrometry.


1992 ◽  
Vol 26 (3-4) ◽  
pp. 907-914 ◽  
Author(s):  
A. Attal ◽  
M. Brigodiot ◽  
P. Camacho ◽  
J. Manem

The purpose of this study is to gain a better understanding of the biological phenomena involved in the production of hydrogen sulfide in urban wastewater (UWW) systems. It is found that the UWW itself naturally possesses the biomass needed to consume the sulfates. These heterotrophic sulfate-reducing bacteria populations, though immediately active in strict anaerobic conditions, are present only in very low concentrations in the UWW. A concentration of them was studied within the pressure pipes, in the form of deposits, and this justifies the high concentrations of sulfides measured in certain wastewater networks. There are two reasons why the ferrous sulfate used as a treatment in any wastewater networks should not cause the production of additional sulfides. Firstly, the sulfate consumption kinetics are always too slow, relative to the residence time of the water in the pipe, for all of the sulfates to be consumed anyway. Secondly, the amount of assimilable carbon, soluble carbon, and carbon from suspended solid (SS) hydrolysis is insufficient.


2000 ◽  
Vol 41 (1) ◽  
pp. 69-72 ◽  
Author(s):  
S.Ç. Ayaz ◽  
I. Akca

The constructed wetland is a low-cost technology to control environmental pollution. The system is especially suitable for small settlements. An innovative constructed wetland technology is described in this paper. A pilot plant was used to assess the performance of the system. The experimental system consists of two serial connected tanks that settled up with fillers and Cyperus as treatment media. Wastewater is recycled periodically upward and downward between the two tanks. The treatment performance was monitored in different loading conditions in a one-year period. The average COD removal efficiency of 90% was observed at 122 g COD/m2.day average loading conditions. Other average removal values in the same conditions are as follows: suspended solid 95%, TKN 77%, total nitrogen 61%, PO4-P 39%. The land requirement for this system will be 0.82 m2 per capita when applying as full-scale system.


2000 ◽  
Vol 41 (4-5) ◽  
pp. 487-492 ◽  
Author(s):  
D. Pak ◽  
W. Chang

A two-biofilter system operated under alternating anaerobic/aerobic conditions was tested to remove nutrient as well as organics from wastewater generated from car-washing facility. The wastewater was characterized by relatively low organic and high phosphorus content. The factors affecting phosphorus removal in the two-biofilter system were investigated. Operational parameters examined in this study were hydraulic retention time, organic, suspended solid and nitrogen loading rate. The factors affecting phosphorus removal in biological filter appeared to be influent COD, COD/T–P, BOD/COD, nitrogen, and SS/T–P. Nitrite and nitrate produced in the biofilter in aerobic condition affected phosphorus removal by the two-biofilter system. The biomass wasted during backwash procedure also affected total phosphorus removal by the system.


2021 ◽  
pp. 0734242X2110103
Author(s):  
Anbazhagan Sethupathy ◽  
Pushkar Kumar Pathak ◽  
Palani Sivashanmugam ◽  
Chelliah Arun ◽  
Jayakumar Rajesh banu ◽  
...  

In this study, the impact of ozonation abetted with the citric acid pretreatment (OZCAP) method on fruit waste was investigated for ameliorating hydrogen production. Initially, the ozonation pretreatment (OZP) method was performed by varying ozone (O3) dosage and disintegration time. At optimized conditions (O3 dosage (0.04 g/g suspended solid; SS) and disintegration time (40 minutes)), 17.6% of liquefied organics emancipate rate (LER) and 13.5% of SS reduction were perceived. Further augmenting LER of fruit waste, OZCAP method was proceeded by varying citric acid dosage and disintegration time at an optimized OZP dosage (0.04 g/g SS). A higher LER (24.4%) and SS reduction (19%) were described at an optimal citric acid dosage (0.03 g/g SS) and disintegration time (20 minutes). Then, the hydrogen production potential of OZCAP, OZP and raw fruit waste were evaluated in which OZCAP method exhibited a higher cumulative hydrogen production (30 mL/g volatile solids). Energy valuation reveals that OZCAP method exhibited a net energy of 3.7 kWh/kg of fruit waste.


2006 ◽  
Vol 53 (7) ◽  
pp. 235-242 ◽  
Author(s):  
S. Hwang ◽  
H. Jang ◽  
M. Lee ◽  
J. Song ◽  
S. Kim

In this study, integrated pretreatments and aerobic digestion processes were investigated in order to provide a feasible alternative that can achieve effective sludge reduction. An ozone treatment in the presence of ionic manganese, a catalyst, increased the sludge reduction ratio three times higher than that of a single ozonation, presumably due to an increase in OH radical production. The ozone treatment yielded the effective sludge reduction ratio with an increasing ozone dosage, and an effective dosage of the catalyst was found to be 4 mg-Mn/g-TS. When a mechanical pretreatment and an ozone/catalyst were applied in a series, the integrated process, even at a half mechanical intensity and a half level of ozone dosage, showed higher and faster sludge reduction than each single process did. In addition, the integrated pretreatment process showed the highest dewaterability of the treated sludges. A ratio of sludge cake generation, which was newly introduced to quantify overall performance of sludge treatment processes, showed that the integrated pretreatment followed by the aerobic digestion yielded approximately a half of the sludge cake volume compared to the single aerobic digestion. Therefore, the integrated pretreatment can be a feasible method for the effective reduction of total suspended solid and the final volume.


2013 ◽  
Vol 789 ◽  
pp. 531-537
Author(s):  
Erna Yuliawati ◽  
Ahmad Fauzi Ismail

Refinery wastewater treatment is needed especially in the oil-producing arid regions such as oil refineries due to water scarcity. One of potentially applicable process to treat refinery wastewater is a submerged membrane technology. However, the application of submerged membrane systems for industrial wastewater treatment is still in its infancy due to significant variety in wastewater composition and high operational costs. Aim of this study was to investigate ultrafiltration (UF) membrane morphology and performance for refinery produced wastewater treatment. Submerged UF bundle was equipped using polyvinylidene fluoride (PVDF) hollow fibers, which added by dispersing lithium chloride monohydrate (LiCl.H2O) and titanium dioxide (TiO2). The comparison of morphological and performance tests was conducted on prepared PVDF ultrafiltration membranes. Distinctive changes were observed in membrane characteristics in term of membrane wettability, tensile testing and roughness measurement. Mean pore size and surface porosity were calculated based on permeate flux. Fouling characteristics for hydrophilic PVDF hollow fibers fouled with suspended solid matter was also investigated. Mixed liquor suspended solid (MLSS) of 3 g/L and 4.5 g/L were assessed by using submerged PVDF membrane with varied air bubble flow rates. Results showed that effect of air bubbles flow rate of 2.4 ml/min increased flux, total suspended solids (TSS) and sulfide removal of 148.82 L/m2h, 99.82 % and 89.2%, respectively due to increase of turbulence around fibers, which exerts shear stress to minimize particles deposited on membrane surface. It was concluded that submerged ultrafiltration is an available option to minimize energy process for treating such wastewater solution.


Sign in / Sign up

Export Citation Format

Share Document