Imaging the molecular composition-specific tissue biomechanics at high frequency with Brillouin-Raman microscopy (Conference Presentation)

Author(s):  
Francesca Palombo
2019 ◽  
Vol 96 ◽  
pp. 368-384 ◽  
Author(s):  
Katherine E. Kramer ◽  
Colton J. Ross ◽  
Devin W. Laurence ◽  
Anju R. Babu ◽  
Yi Wu ◽  
...  

2019 ◽  
Author(s):  
Katherine Kramer ◽  
Colton Ross ◽  
Anju Babu ◽  
Yi Wu ◽  
Rheal Towner ◽  
...  

Materials ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1416 ◽  
Author(s):  
Alikin ◽  
Slautin ◽  
Abramov ◽  
Rosato ◽  
Shur ◽  
...  

In this contribution, a correlative confocal Raman and scanning probe microscopy approach was implemented to find a relation between the composition, lithiation state, and functional electrochemical response in individual micro-scale particles of a LiMn2O4 spinel in a commercial Li battery cathode. Electrochemical strain microscopy (ESM) was implemented both at a low-frequency (3.5 kHz) and in a high-frequency range of excitation (above 400 kHz). It was shown that the high-frequency ESM has a significant cross-talk with topography due to a tip-sample electrostatic interaction, while the low-frequency ESM yields a response correlated with distributions of Li ions and electrochemically inactive phases revealed by the confocal Raman microscopy. Parasitic contributions into the electromechanical response from the local Joule heating and flexoelectric effect were considered as well and found to be negligible. It was concluded that the low-frequency ESM response directly corresponds to the confocal Raman microscopy data. The analysis implemented in this work is an important step towards the quantitative measurement of diffusion coefficients and ion concentration via strain-based scanning probe microscopy methods in a wide range of ionically active materials.


Author(s):  
P. M. Lowrie ◽  
W. S. Tyler

The importance of examining stained 1 to 2μ plastic sections by light microscopy has long been recognized, both for increased definition of many histologic features and for selection of specimen samples to be used in ultrastructural studies. Selection of specimens with specific orien ation relative to anatomical structures becomes of critical importance in ultrastructural investigations of organs such as the lung. The uantity of blocks necessary to locate special areas of interest by random sampling is large, however, and the method is lacking in precision. Several methods have been described for selection of specific areas for electron microscopy using light microscopic evaluation of paraffin, epoxy-infiltrated, or epoxy-embedded large blocks from which thick sections were cut. Selected areas from these thick sections were subsequently removed and re-embedded or attached to blank precasted blocks and resectioned for transmission electron microscopy (TEM).


Author(s):  
W. E. Lee ◽  
A. H. Heuer

IntroductionTraditional steatite ceramics, made by firing (vitrifying) hydrous magnesium silicate, have long been used as insulators for high frequency applications due to their excellent mechanical and electrical properties. Early x-ray and optical analysis of steatites showed that they were composed largely of protoenstatite (MgSiO3) in a glassy matrix. Recent studies of enstatite-containing glass ceramics have revived interest in the polymorphism of enstatite. Three polymorphs exist, two with orthorhombic and one with monoclinic symmetry (ortho, proto and clino enstatite, respectively). Steatite ceramics are of particular interest a they contain the normally unstable high-temperature polymorph, protoenstatite.Experimental3mm diameter discs cut from steatite rods (∼10” long and 0.5” dia.) were ground, polished, dimpled, and ion-thinned to electron transparency using 6KV Argon ions at a beam current of 1 x 10-3 A and a 12° angle of incidence. The discs were coated with carbon prior to TEM examination to minimize charging effects.


Author(s):  
G. Y. Fan ◽  
J. M. Cowley

It is well known that the structure information on the specimen is not always faithfully transferred through the electron microscope. Firstly, the spatial frequency spectrum is modulated by the transfer function (TF) at the focal plane. Secondly, the spectrum suffers high frequency cut-off by the aperture (or effectively damping terms such as chromatic aberration). While these do not have essential effect on imaging crystal periodicity as long as the low order Bragg spots are inside the aperture, although the contrast may be reversed, they may change the appearance of images of amorphous materials completely. Because the spectrum of amorphous materials is continuous, modulation of it emphasizes some components while weakening others. Especially the cut-off of high frequency components, which contribute to amorphous image just as strongly as low frequency components can have a fundamental effect. This can be illustrated through computer simulation. Imaging of a whitenoise object with an electron microscope without TF limitation gives Fig. 1a, which is obtained by Fourier transformation of a constant amplitude combined with random phases generated by computer.


Author(s):  
M. T. Postek ◽  
A. E. Vladar

Fully automated or semi-automated scanning electron microscopes (SEM) are now commonly used in semiconductor production and other forms of manufacturing. The industry requires that an automated instrument must be routinely capable of 5 nm resolution (or better) at 1.0 kV accelerating voltage for the measurement of nominal 0.25-0.35 micrometer semiconductor critical dimensions. Testing and proving that the instrument is performing at this level on a day-by-day basis is an industry need and concern which has been the object of a study at NIST and the fundamentals and results are discussed in this paper.In scanning electron microscopy, two of the most important instrument parameters are the size and shape of the primary electron beam and any image taken in a scanning electron microscope is the result of the sample and electron probe interaction. The low frequency changes in the video signal, collected from the sample, contains information about the larger features and the high frequency changes carry information of finer details. The sharper the image, the larger the number of high frequency components making up that image. Fast Fourier Transform (FFT) analysis of an SEM image can be employed to provide qualitiative and ultimately quantitative information regarding the SEM image quality.


1992 ◽  
Vol 1 (4) ◽  
pp. 52-55 ◽  
Author(s):  
Gail L. MacLean ◽  
Andrew Stuart ◽  
Robert Stenstrom

Differences in real ear sound pressure levels (SPLs) with three portable stereo system (PSS) earphones (supraaural [Sony Model MDR-44], semiaural [Sony Model MDR-A15L], and insert [Sony Model MDR-E225]) were investigated. Twelve adult men served as subjects. Frequency response, high frequency average (HFA) output, peak output, peak output frequency, and overall RMS output for each PSS earphone were obtained with a probe tube microphone system (Fonix 6500 Hearing Aid Test System). Results indicated a significant difference in mean RMS outputs with nonsignificant differences in mean HFA outputs, peak outputs, and peak output frequencies among PSS earphones. Differences in mean overall RMS outputs were attributed to differences in low-frequency effects that were observed among the frequency responses of the three PSS earphones. It is suggested that one cannot assume equivalent real ear SPLs, with equivalent inputs, among different styles of PSS earphones.


2019 ◽  
Vol 28 (1S) ◽  
pp. 209-224 ◽  
Author(s):  
Julia Campbell ◽  
Alison LaBrec ◽  
Connor Bean ◽  
Mashhood Nielsen ◽  
Won So

Sign in / Sign up

Export Citation Format

Share Document