The effect of embedded dye molecules with the TiO2 on the performance of solar-capacitor device

Author(s):  
Belqasem Aljafari ◽  
Arash Takshi
Keyword(s):  
Author(s):  
W. J. Larsen ◽  
R. Azarnia ◽  
W. R. Loewenstein

Although the physiological significance of the gap junction remains unspecified, these membrane specializations are now recognized as common to almost all normal cells (excluding adult striated muscle and some nerve cells) and are found in organisms ranging from the coelenterates to man. Since it appears likely that these structures mediate the cell-to-cell movement of ions and small dye molecules in some electrical tissues, we undertook this study with the objective of determining whether gap junctions in inexcitable tissues also mediate cell-to-cell coupling.To test this hypothesis, a coupling, human Lesh-Nyhan (LN) cell was fused with a non-coupling, mouse cl-1D cell, and the hybrids, revertants, and parental cells were analysed for coupling with respect both to ions and fluorescein and for membrane junctions with the freeze fracture technique.


2000 ◽  
Vol 660 ◽  
Author(s):  
Amarjeet Kaur ◽  
Mario J. Cazeca ◽  
Kethinni G. Chittibabu ◽  
Jayant Kumar ◽  
Sukant K. Tripathy

ABSTRACTOrganic electroluminescent (EL) diodes based on fluorescent dyes and conducting polymers have attracted the interest of researchers, mainly because of their emission in the visible region and for application to large area portable flat panel display devices, driven at low voltages. Therefore, for the development of higher efficiency polymer EL diodes, the optimal combination of the merits of organic fluorescent dye molecules with that of conjugated polymer is an important approach. We report electroluminescence studies of polymer light emitting diodes (p-LEDs) fabricated with poly[2-(3-thienyl)ethanol n-butoxy carbonylmethyl urethane] (PURET) and its composite with 4-dicyanomethylene-2-methyl-6-(p-dimethylaminostyryl)-4H pyran (DCM) dye. These materials have been chosen in view of the fact that PURET exhibits a small overlap between emission and absorption spectra whereas DCM has a good efficiency of trapping both electrons as well as holes. Polyaniline has been utilized as hole injecting layer whereas tris-8-hydroxyquinoline-aluminum as electron injecting layer. Enhanced electroluminescence with bright yellow color has been observed in p-LEDs by the addition of dye.


2019 ◽  
Author(s):  
Jingjing Yan ◽  
Rick Homan ◽  
Corrianna Boucher ◽  
Prem N. Basa ◽  
Katherine Fossum ◽  
...  

Recently, we demonstrated that triphenylacetic acid could be used to seal dye molecules within MOF-5, but guest release required digestion of the framework by treatment with acid. We prepared the sterically bulky photocapping group [bis-(3-nitro-benzyl)-amino]-(3-nitro-phenyl)-acetic acid (PC1) can prevent Crystal violet dye diffusion from inside MOF-5 until removed by photolysis.


2019 ◽  
Author(s):  
Jingjing Yan ◽  
Rick Homan ◽  
Corrianna Boucher ◽  
Prem N. Basa ◽  
Katherine Fossum ◽  
...  

Recently, we demonstrated that triphenylacetic acid could be used to seal dye molecules within MOF-5, but guest release required digestion of the framework by treatment with acid. We prepared the sterically bulky photocapping group [bis-(3-nitro-benzyl)-amino]-(3-nitro-phenyl)-acetic acid (PC1) can prevent Crystal violet dye diffusion from inside MOF-5 until removed by photolysis.


1995 ◽  
Vol 30 (1) ◽  
pp. 53-60 ◽  
Author(s):  
Deng Nansheng ◽  
Tian Shizhong ◽  
Xia Mei

Abstract Tests for the photocatalytic degradation of solutions of three reactive dyes, Red M-5B, Procion Blue MX-R and Procion Black H-N, in the presence of H2O2 were carried out. When the solutions of the three reactive dyes were irradiated by UV or solar light, the colour of the solutions disappeared gradually. A statistical analysis of the test results indicated a linear relation between the concentration of dyes and the time of irradiation. The discolouration reaction of the solutions was of the first order. Rate equations for the discolouration reactions of dye solutions were developed. The dark reactions or the dye solutions containing H2O2 were very slow, illustrating that the photochemical reaction played a very important role. It was demonstrated that UV light and solar light (300 to 380 nm) photolyzes the HO and that the resulting OH radical reacts with the dye molecules and destroys the chromophore.


2021 ◽  
Vol 11 (6) ◽  
pp. 2472
Author(s):  
Ilaria Fratoddi ◽  
Chiara Battocchio ◽  
Giovanna Iucci ◽  
Daniele Catone ◽  
Antonella Cartoni ◽  
...  

This paper presents the synthesis of silver nanoparticles (AgNPs) functionalized with fluorescent molecules, in particular with xanthene-based dyes, i.e., fluorescein isothiocyanate (FITC, λmax = 485 nm) and rhodamine B isothiocyanate (RITC, λmax = 555 nm). An in-depth characterization of the particle–dye systems, i.e., AgNPs–RITC and AgNPs–FITC, is presented to evaluate their chemical structure and optical properties due to the interaction between their plasmonic and absorption properties. UV–Vis spectroscopy and the dynamic light scattering (DLS) measurements confirmed the nanosize of the AgNPs–RITC and AgNPs–FITC. Synchrotron radiation X-ray photoelectron spectroscopy (SR-XPS) was used to study the chemical surface functionalization by structural characterization, confirming/examining the isothiocyanate–metal interaction. For AgNPs–RITC, in which the plasmonic and fluorescence peak are not superimposed, the transient dynamics of the dye fluorescence were also studied. Transient absorption measurements showed that by exciting the AgNPs–RITC sample at a wavelength corresponding to the AgNP plasmon resonance, it was possible to preferentially excite the RITC dye molecules attached to the surface of the NPs with respect to the free dye molecules in the solution. These results demonstrate how, by combining plasmonics and fluorescence, these AgNPs can be used as promising systems in biosensing and imaging applications.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2638
Author(s):  
Nguyen Thi Kim Chung ◽  
Phat Tan Nguyen ◽  
Ha Thanh Tung ◽  
Dang Huu Phuc

In this study, we provide the reader with an overview of quantum dot application in solar cells to replace dye molecules, where the quantum dots play a key role in photon absorption and excited charge generation in the device. The brief shows the types of quantum dot sensitized solar cells and presents the obtained results of them for each type of cell, and provides the advantages and disadvantages. Lastly, methods are proposed to improve the efficiency performance in the next researching.


Sign in / Sign up

Export Citation Format

Share Document