Revealing a scattering object from the spatial distribution of phase singularities in a speckle field

2021 ◽  
Author(s):  
Oleg V. Angelsky ◽  
Andrew P. MAKSIMYAK ◽  
Peter P. Maksimyak ◽  
Igor O. Mokrienko
Circulation ◽  
2003 ◽  
Vol 108 (3) ◽  
pp. 354-359 ◽  
Author(s):  
Miguel Valderrábano ◽  
Peng-Sheng Chen ◽  
Shien-Fong Lin

2016 ◽  
Vol 117 (9) ◽  
Author(s):  
L. De Angelis ◽  
F. Alpeggiani ◽  
A. Di Falco ◽  
L. Kuipers

2021 ◽  
Vol 12 ◽  
Author(s):  
Aulia Khamas Heikhmakhtiar ◽  
Abrha Abebe Tekle ◽  
Ki Moo Lim

Myocardial fibrosis is an integral component of most forms of heart failure. Clinical and computational studies have reported that spatial fibrosis pattern and fibrosis amount play a significant role in ventricular arrhythmogenicity. This study investigated the effect of the spatial distribution of fibrosis and fibrosis amount on the electrophysiology and mechanical performance of the human ventricles. Seventy-five fibrosis distributions comprising diffuse, patchy, and compact fibrosis types that contain 10–50% fibrosis amount were generated. The spatial fibrosis distribution was quantified using the fibrosis entropy (FE) metric. Electrical simulations under reentry conditions induced using the S1–S2 protocol were conducted to investigate the fibrosis arrhythmogenicity. We also performed mechanical simulations to examine the influence of the fibrosis amount and the spatial distribution of fibrosis on the pumping efficacy of the LV. We observed that the mean FE of the compact type is the largest among the three types. The electrical simulation results revealed that the ventricular arrhythmogenicity of diffuse fibrosis depends on the fibrosis amount and marginally on the spatial distribution of fibrosis. Meanwhile, the ventricular arrhythmogenicity of the compact and patchy fibrosis pattern is more reliant on the spatial distribution of fibrosis than on the fibrosis amount. The average number of phase singularities (PSs) in the compact fibrosis pattern was the highest among the three patterns of fibrosis. The diffuse type of fibrosis has the lowest average number of PSs than that in the patchy and compact fibrosis. The reduction in the stroke volume (SV) showed high influence from the electrical instabilities induced by the fibrosis amount and pattern. The compact fibrosis exhibited the lowest SV among the three patterns except in the 40% fibrosis amount. In conclusion, the fibrosis pattern is as crucial as the fibrosis amount for sustaining and aggravating ventricular arrhythmogenesis.


2009 ◽  
Vol 58 (8) ◽  
pp. 5376
Author(s):  
Liu Man ◽  
Cheng Chuan-Fu ◽  
Song Hong-Sheng ◽  
Teng Shu-Yun ◽  
Liu Gui-Yuan

Author(s):  
L. D. Jackel

Most production electron beam lithography systems can pattern minimum features a few tenths of a micron across. Linewidth in these systems is usually limited by the quality of the exposing beam and by electron scattering in the resist and substrate. By using a smaller spot along with exposure techniques that minimize scattering and its effects, laboratory e-beam lithography systems can now make features hundredths of a micron wide on standard substrate material. This talk will outline sane of these high- resolution e-beam lithography techniques.We first consider parameters of the exposure process that limit resolution in organic resists. For concreteness suppose that we have a “positive” resist in which exposing electrons break bonds in the resist molecules thus increasing the exposed resist's solubility in a developer. Ihe attainable resolution is obviously limited by the overall width of the exposing beam, but the spatial distribution of the beam intensity, the beam “profile” , also contributes to the resolution. Depending on the local electron dose, more or less resist bonds are broken resulting in slower or faster dissolution in the developer.


Author(s):  
Jayesh Bellare

Seeing is believing, but only after the sample preparation technique has received a systematic study and a full record is made of the treatment the sample gets.For microstructured liquids and suspensions, fast-freeze thermal fixation and cold-stage microscopy is perhaps the least artifact-laden technique. In the double-film specimen preparation technique, a layer of liquid sample is trapped between 100- and 400-mesh polymer (polyimide, PI) coated grids. Blotting against filter paper drains excess liquid and provides a thin specimen, which is fast-frozen by plunging into liquid nitrogen. This frozen sandwich (Fig. 1) is mounted in a cooling holder and viewed in TEM.Though extremely promising for visualization of liquid microstructures, this double-film technique suffers from a) ireproducibility and nonuniformity of sample thickness, b) low yield of imageable grid squares and c) nonuniform spatial distribution of particulates, which results in fewer being imaged.


Author(s):  
Auclair Gilles ◽  
Benoit Danièle

During these last 10 years, high performance correction procedures have been developed for classical EPMA, and it is nowadays possible to obtain accurate quantitative analysis even for soft X-ray radiations. It is also possible to perform EPMA by adapting this accurate quantitative procedures to unusual applications such as the measurement of the segregation on wide areas in as-cast and sheet steel products.The main objection for analysis of segregation in steel by means of a line-scan mode is that it requires a very heavy sampling plan to make sure that the most significant points are analyzed. Moreover only local chemical information is obtained whereas mechanical properties are also dependant on the volume fraction and the spatial distribution of highly segregated zones. For these reasons we have chosen to systematically acquire X-ray calibrated mappings which give pictures similar to optical micrographs. Although mapping requires lengthy acquisition time there is a corresponding increase in the information given by image anlysis.


Author(s):  
Gary Bassell ◽  
Robert H. Singer

We have been investigating the spatial distribution of nucleic acids intracellularly using in situ hybridization. The use of non-isotopic nucleotide analogs incorporated into the DNA probe allows the detection of the probe at its site of hybridization within the cell. This approach therefore is compatible with the high resolution available by electron microscopy. Biotinated or digoxigenated probe can be detected by antibodies conjugated to colloidal gold. Because mRNA serves as a template for the probe fragments, the colloidal gold particles are detected as arrays which allow it to be unequivocally distinguished from background.


Author(s):  
J.M. Robinson ◽  
J.M Oliver

Specialized regions of plasma membranes displaying lateral heterogeneity are the focus of this Symposium. Specialized membrane domains are known for certain cell types such as differentiated epithelial cells where lateral heterogeneity in lipids and proteins exists between the apical and basolateral portions of the plasma membrane. Lateral heterogeneity and the presence of microdomains in membranes that are uniform in appearance have been more difficult to establish. Nonetheless a number of studies have provided evidence for membrane microdomains and indicated a functional importance for these structures.This symposium will focus on the use of various imaging modalities and related approaches to define membrane microdomains in a number of cell types. The importance of existing as well as emerging imaging technologies for use in the elucidation of membrane microdomains will be highlighted. The organization of membrane microdomains in terms of dimensions and spatial distribution is of considerable interest and will be addressed in this Symposium.


Sign in / Sign up

Export Citation Format

Share Document