Analysis of extreme rainfall distribution and tropical cyclone impact in Yogyakarta, Indonesia

2021 ◽  
Author(s):  
Yossi Siahaan ◽  
Emilya Nurjani
2021 ◽  
Author(s):  
Anil Deo ◽  
Savin S. Chand ◽  
Hamish Ramsay ◽  
Neil J. Holbrook ◽  
Simon McGree ◽  
...  

AbstractSouthwest Pacific nations are among some of the worst impacted and most vulnerable globally in terms of tropical cyclone (TC)-induced flooding and accompanying risks. This study objectively quantifies the fractional contribution of TCs to extreme rainfall (hereafter, TC contributions) in the context of climate variability and change. We show that TC contributions to extreme rainfall are substantially enhanced during active phases of the Madden–Julian Oscillation and by El Niño conditions (particularly over the eastern southwest Pacific region); this enhancement is primarily attributed to increased TC activity during these event periods. There are also indications of increasing intensities of TC-induced extreme rainfall events over the past few decades. A key part of this work involves development of sophisticated Bayesian regression models for individual island nations in order to better understand the synergistic relationships between TC-induced extreme rainfall and combinations of various climatic drivers that modulate the relationship. Such models are found to be very useful for not only assessing probabilities of TC- and non-TC induced extreme rainfall events but also evaluating probabilities of extreme rainfall for cases with different underlying climatic conditions. For example, TC-induced extreme rainfall probability over Samoa can vary from ~ 95 to ~ 75% during a La Niña period, if it coincides with an active or inactive phase of the MJO, and can be reduced to ~ 30% during a combination of El Niño period and inactive phase of the MJO. Several other such cases have been assessed for different island nations, providing information that have potentially important implications for planning and preparing for TC risks in vulnerable Pacific Island nations.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jing Zhang ◽  
Xiaoan Zuo ◽  
Xueyong Zhao ◽  
Jianxia Ma ◽  
Eduardo Medina-Roldán

Abstract Extreme climate events and nitrogen (N) deposition are increasingly affecting the structure and function of terrestrial ecosystems. However, the response of plant biomass to variations to these global change drivers is still unclear in semi-arid regions, especially in degraded sandy grasslands. In this study, a manipulative field experiment run over two years (from 2017 to 2018) was conducted to examine the effect of rainfall alteration and nitrogen addition on biomass allocation of annuals and perennial plants in Horqin sandy grassland, Northern China. Our experiment simulated extreme rainfall and extreme drought (a 60% reduction or increment in the growing season rainfall with respect to a control background) and N addition (20 g/m2) during the growing seasons. We found that the sufficient rainfall during late July and August compensates for biomass losses caused by insufficient water in May and June. When rainfall distribution is relatively uniform during the growing season, extreme rainfall increased aboveground biomass (AGB) and belowground biomass (BGB) of annuals, while extreme drought reduced AGB and BGB of perennials. Rainfall alteration had no significant impacts on the root-shoot ratio (R/S) of sandy grassland plants, while N addition reduced R/S of grassland species when there was sufficient rainfall in the early growing season. The biomass of annuals was more sensitive to rainfall alteration and nitrogen addition than the biomass of perennials. Our findings emphasize the importance of monthly rainfall distribution patterns during the growing season, which not only directly affect the growth and development of grassland plants, but also affect the nitrogen availability of grassland plants.


2020 ◽  
Author(s):  
Jose Luis Salinas ◽  
Rebecca Smith ◽  
Shuangcai Li ◽  
Ludovico Nicotina ◽  
Arno Hilberts

<p>Damages from flooding in China account on average for 60-70% of the total Annual Losses derived from natural catastrophes. The extreme rainfall events responsible for these inundations can be broadly categorised in two well differentiated mechanisms: Tropical Cyclone (TC) induced, and non Tropical Cyclone induced (nonTC) precipitation. Between 2001 and 2015, inland nonTC rainfall flood events occurred roughly with double the frequency as TC events. While TC events can be highly destructive for coastal locations, over the entire China territory nonTC flooding accounted for more than half of the total economic flood loss for events with significant socio-economic impact, highlighting the importance of the nonTC flooding mechanism on the regional and national scale.</p><p>Large-scale modes of climate variability modulate in different ways TC and nonTC induced precipitation, both in the frequency and the magnitude of the events. In a stochastic rainfall generation framework, it becomes therefore useful to model these two mechanisms separately and include their differentiated long-term climatic influences in order to fully reproduce the overall observed rainfall variability. This work presents results on the effect of ENSO and Southern Oscillation Index (SOI) values on seasonal rainfall in China, and how to include this climatic variability in stochastic rainfall for flood catastrophe modelling.</p>


2015 ◽  
Vol 28 (24) ◽  
pp. 9501-9506 ◽  
Author(s):  
Liguang Wu ◽  
Wei Tian ◽  
Qingyuan Liu ◽  
Jian Cao ◽  
John A. Knaff

Abstract Tropical cyclone (TC) size, usually measured with the radius of gale force wind (34 kt or 17 m s−1), is an important parameter for estimating TC risks such as wind damage, rainfall distribution, and storm surge. Previous studies have reported that there is a very weak relationship between TC size and TC intensity. A close examination presented here using satellite-based wind analyses suggests that the relationship between TC size and intensity is nonlinear. TC size generally increases with increasing TC maximum sustained wind before a maximum of 2.50° latitude at an intensity of 103 kt or 53.0 m s−1 and then slowly decreases as the TC intensity further increases. The observed relationship between TC size and intensity is compared to the relationships produced by an 11-yr seasonal numerical simulation of TC activity. The numerical simulations were able to produce neither the observed maximum sustained winds nor the observed nonlinear relationship between TC size and intensity. This finding suggests that TC size cannot reasonably be simulated with 9-km horizontal resolution and increased resolution is needed to study TC size variations using numerical simulations.


2016 ◽  
Vol 17 (11) ◽  
pp. 2883-2904 ◽  
Author(s):  
Maofeng Liu ◽  
James A. Smith

Abstract Hurricane Irene produced catastrophic rainfall and flooding in portions of the eastern United States from 27 to 29 August 2011. Like a number of tropical cyclones that have produced extreme flooding in the northeastern United States, Hurricane Irene was undergoing extratropical transition during the period of most intense rainfall. In this study the rainfall distribution of landfalling tropical cyclones is examined, principally through analyses of radar rainfall fields and high-resolution simulations using the Weather Research and Forecasting (WRF) Model. In addition to extratropical transition, the changing storm environment at landfall and orographic precipitation mechanisms can be important players in controlling the distribution of extreme rainfall. Rainfall distribution from landfalling tropical cyclones is examined from a Lagrangian perspective, focusing on times of landfall and extratropical transition, as well as interactions of the storm circulation with mountainous terrain. WRF simulations capture important features of rainfall distribution, including the pronounced change in rainfall distribution during extratropical transition. Synoptic-scale analyses show that a deep baroclinic zone developed and strengthened in the left-front quadrant of Irene, controlling rainfall distribution over the regions experiencing most severe flooding. Numerical experiments were performed with WRF to examine the role of mountainous terrain in altering rainfall distribution. Analyses of Hurricane Irene are placed in a larger context through analyses of Hurricane Hannah (2008) and Hurricane Sandy (2012).


2019 ◽  
Vol 5 (1) ◽  
pp. 1
Author(s):  
Rachna Sok

Tropical cyclones are the most serious meteorological phenomena that hit Bima city in December 2016. The strong winds and heavy precipitation associated with a typhoon significantly affect the weather in this city. The impact of a tropical cyclone on precipitation variability in Bima is studied using rainfall data for analyzing hourly rainfall distribution pattern during the event. Depend on the geographic situation and climate characteristic, the hourly rainfall distribution pattern of one area is different to others area. The research aims to analyze hourly rainfall distribution pattern in the form of the rainfall intensity distribution. This research is conducted using one automatic rainfall gauge in Bima city, West Nusa Tenggara province that obtained from Regional Disaster Management Agency (BPBD). The results showed that two events of rainfall were recorded. The first rainfall event was on 20th to 21st December 2016 with a total rainfall 191.4 mm. The second rainfall event occurred on 22nd to 23rd December 2016 with a total rainfall 126.2 mm. The rainfall distribution pattern has rainfall intensity peak at 45% of duration with cumulative rainfall reached 70%. It was found there is no common pattern of temporal rainfall distribution for rainfall induced by tropical cyclones.


Author(s):  
Maofeng Liu ◽  
James A. Smith ◽  
Long Yang ◽  
Gabriel A. Vecchi

Abstract The climatology of tropical cyclone flooding in the Carolinas is analyzed through annual flood peak observations from 411 U.S. Geological Survey (USGS) stream gaging stations. Tropical cyclones (TCs) account for 28% of the top ten annual flood peaks, 55% of record floods, and 91% of floods with peak magnitudes at least five times greater than the 10-year floods, highlighting the prominent role of TCs for flood extremes in the Carolinas. Of all TC-related flood events, the top ten storms account for nearly 1/3 of annual flood peaks and more than 2/3 of record floods, reflecting the dominant role of a small number of storms in determining the upper tail of flood peak distributions. Analyses of the ten storms highlight both common elements and diversity in storm properties that are responsible for flood peaks. Extratropical transition and orographic enhancement are important elements of extreme TC flooding in the Carolinas. Analyses of the Great Flood of 1916 highlight the flood peak of 3115 m3 s−1 in French Broad River at Asheville, 2.6 times greater than the second-largest peak from a record of 124 years. We also examine the hydroclimatology, hydrometeorology and hydrology of flooding from Hurricanes Matthew (2016) and Florence (2018). Results point to contrasting storm properties for the two events, including tracks as well as rainfall distribution and associated physical mechanisms. Climatological analyses of vertically integrated water vapor transport (IVT) highlight the critical role of anomalous moisture transport from the Atlantic Ocean in producing extreme rainfall and flooding over the Carolinas.


2018 ◽  
Vol 31 (12) ◽  
pp. 4605-4616 ◽  
Author(s):  
Dasol Kim ◽  
Chang-Hoi Ho ◽  
Doo-Sun R. Park ◽  
Johnny C. L. Chan ◽  
Youngsun Jung

In this study, the variation of tropical cyclone (TC) rainfall area over the subtropical oceans is investigated using the Tropical Rainfall Measuring Mission precipitation data collected from 1998 to 2014, with a focus on its relationship with environmental conditions. In the subtropics, higher moving speed and larger vertical wind shear significantly contribute to an increase in TC rainfall area by making horizontal rainfall distribution more asymmetric, while sea surface temperature rarely affects the fluctuation of TC rainfall area. This relationship between TC rainfall area and environmental conditions in the subtropics is almost opposite to that in the tropics. It is suggested that, in the subtropics, unlike the tropics, dynamic environmental conditions are likely more crucial to varying TC rainfall area than thermodynamic environmental ones.


Sign in / Sign up

Export Citation Format

Share Document