Cluster analysis of echelon utilization of power battery based on machine learning

2021 ◽  
Author(s):  
Hong Li ◽  
Hengjie Li ◽  
JiangHao Zhu
Author(s):  
Hyeuk Kim

Unsupervised learning in machine learning divides data into several groups. The observations in the same group have similar characteristics and the observations in the different groups have the different characteristics. In the paper, we classify data by partitioning around medoids which have some advantages over the k-means clustering. We apply it to baseball players in Korea Baseball League. We also apply the principal component analysis to data and draw the graph using two components for axis. We interpret the meaning of the clustering graphically through the procedure. The combination of the partitioning around medoids and the principal component analysis can be used to any other data and the approach makes us to figure out the characteristics easily.


2021 ◽  
Vol 17 (3) ◽  
pp. 499-518
Author(s):  
Elena Galli ◽  
Corentin Bourg ◽  
Wojciech Kosmala ◽  
Emmanuel Oger ◽  
Erwan Donal

Nutrients ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1681 ◽  
Author(s):  
Ramyaa Ramyaa ◽  
Omid Hosseini ◽  
Giri P. Krishnan ◽  
Sridevi Krishnan

Nutritional phenotyping can help achieve personalized nutrition, and machine learning tools may offer novel means to achieve phenotyping. The primary aim of this study was to use energy balance components, namely input (dietary energy intake and macronutrient composition) and output (physical activity) to predict energy stores (body weight) as a way to evaluate their ability to identify potential phenotypes based on these parameters. From the Women’s Health Initiative Observational Study (WHI OS), carbohydrates, proteins, fats, fibers, sugars, and physical activity variables, namely energy expended from mild, moderate, and vigorous intensity activity, were used to predict current body weight (both as body weight in kilograms and as a body mass index (BMI) category). Several machine learning tools were used for this prediction. Finally, cluster analysis was used to identify putative phenotypes. For the numerical predictions, the support vector machine (SVM), neural network, and k-nearest neighbor (kNN) algorithms performed modestly, with mean approximate errors (MAEs) of 6.70 kg, 6.98 kg, and 6.90 kg, respectively. For categorical prediction, SVM performed the best (54.5% accuracy), followed closely by the bagged tree ensemble and kNN algorithms. K-means cluster analysis improved prediction using numerical data, identified 10 clusters suggestive of phenotypes, with a minimum MAE of ~1.1 kg. A classifier was used to phenotype subjects into the identified clusters, with MAEs <5 kg for 15% of the test set (n = ~2000). This study highlights the challenges, limitations, and successes in using machine learning tools on self-reported data to identify determinants of energy balance.


2020 ◽  
Vol 2 (1) ◽  
pp. 109-118
Author(s):  
Andreea Ioana Chiriac

Abstract Artificial Intelligence is used in business through machine learning algorithms. Machine learning is a part of computer science focused on computer systems learning to perform a specific task without using explicit instructions, relying on patterns and inference instead. Though it might seem like we’ve come a long way in the last ten years, which is true from a research perspective, the adoption of AI among corporations is still relatively low. Over time it became possible to automate more tasks and business processes than ever before. The benefit of using artificial intelligence is that does not require to program every step of the process, predicting at each step what could happen and how to resolve it. The algorithms decide for themselves in each case how the problems should be solved, based on the data that is used. I apply Python language to create a synthetic feature vector that allows visualizations in two dimensions for EDIBTA financial ratio. I use Mean-Square Error in order to evaluate the success, having the optimal parameters. In this section, I also mentioned about the purpose, goals, and applications of cluster analysis. I indicated about the basics of cluster analysis and how to do it and also did a demonstration on how to use K-Means.


Author(s):  
Ben Tribelhorn ◽  
H. E. Dillon

Abstract This paper is a preliminary report on work done to explore the use of unsupervised machine learning methods to predict the onset of turbulent transitions in natural convection systems. The Lorenz system was chosen to test the machine learning methods due to the relative simplicity of the dynamic system. We developed a robust numerical solution to the Lorenz equations using a fourth order Runge-Kutta method with a time step of 0.001 seconds. We solved the Lorenz equations for a large range of Raleigh ratios from 1–1000 while keeping the geometry and Prandtl number constant. We calculated the spectral density, various descriptive statistics, and a cluster analysis using unsupervised machine learning. We examined the performance of the machine learning system for different Raleigh ratio ranges. We found that the automated cluster analysis aligns well with well known key transition regions of the convection system. We determined that considering smaller ranges of Raleigh ratios may improve the performance of the machine learning tools. We also identified possible additional behaviors not shown in z-axis bifurcation plots. This unsupervised learning approach can be leveraged on other systems where numerical analysis is computationally intractable or more difficult. The results are interesting and provide a foundation for expanding the study for Prandtl number and geometry variations. Future work will focus on applying the methods to more complex natural convection systems, including the development of new methods for Nusselt correlations.


2020 ◽  
Vol 21 (Supplement_1) ◽  
Author(s):  
T Uejima ◽  
J Cho ◽  
H Hayama ◽  
L Takahashi ◽  
J Yajima ◽  
...  

Abstract Background The assessment of diastolic function is still challenging in the setting of heart failure (HF). We tested the hypothesis that applying a machine learning algorithm would detect heterogeneity in diastolic function and improve risk stratification in HF population. Methods This study included consecutive 279 patients with clinically stable HF referred for echocardiographic assessment, for whom diastolic function variables were measured according to the current guidelines. Cluster analysis, an unsupervised machine learning algorithm, was undertaken on these variables to form homogeneous groups of patients with similar profiles of the variables. Sequential Cox models paralleling the clinical sequence of HF assessment were used to elucidate the benefit of cluster-based classification over guidelines-based classification. The primary endpoint was a hospitalization for worsening HF. Results Cluster analysis identified 3 clusters with distinct properties of diastolic function that shared similarities with guidelines-based classification. The clusters were associated with brain natriuretic peptide level (p &lt; 0.001, figure A). During follow-up period of 2.6 ± 2.0 years, 62 patients (22%) experienced the primary endpoint. Cluster-based classification exhibited a significant prognostic value (c2 = 20.3, p &lt; 0.001, figure B), independent from and incremental to an established clinical risk score for HF (MAGGIC score) and left ventricular end-diastolic volume (hazard ratio = 1.677, p = 0.017, model c2: from 47.5 to 54.1, p = 0.015, figure D). Although guideline-based classification showed a significant prognostic value (c2 = 13.1, p = 0.001, figure C), it did not significantly improve overall prognostication from the baseline (model c2: from 47.5 to 49.9, p = 0.199, figure D). Conclusion Machine learning techniques help grading diastolic function and stratifying the risk for decompensation in HF. Abstract 153 Figure.


2019 ◽  
Vol 62 ◽  
pp. 15-19 ◽  
Author(s):  
Birgit Ludwig ◽  
Daniel König ◽  
Nestor D. Kapusta ◽  
Victor Blüml ◽  
Georg Dorffner ◽  
...  

Abstract Methods of suicide have received considerable attention in suicide research. The common approach to differentiate methods of suicide is the classification into “violent” versus “non-violent” method. Interestingly, since the proposition of this dichotomous differentiation, no further efforts have been made to question the validity of such a classification of suicides. This study aimed to challenge the traditional separation into “violent” and “non-violent” suicides by generating a cluster analysis with a data-driven, machine learning approach. In a retrospective analysis, data on all officially confirmed suicides (N = 77,894) in Austria between 1970 and 2016 were assessed. Based on a defined distance metric between distributions of suicides over age group and month of the year, a standard hierarchical clustering method was performed with the five most frequent suicide methods. In cluster analysis, poisoning emerged as distinct from all other methods – both in the entire sample as well as in the male subsample. Violent suicides could be further divided into sub-clusters: hanging, shooting, and drowning on the one hand and jumping on the other hand. In the female sample, two different clusters were revealed – hanging and drowning on the one hand and jumping, poisoning, and shooting on the other. Our data-driven results in this large epidemiological study confirmed the traditional dichotomization of suicide methods into “violent” and “non-violent” methods, but on closer inspection “violent methods” can be further divided into sub-clusters and a different cluster pattern could be identified for women, requiring further research to support these refined suicide phenotypes.


2020 ◽  
Vol 171 ◽  
pp. 106093 ◽  
Author(s):  
Vasilis Nikolaou ◽  
Sebastiano Massaro ◽  
Masoud Fakhimi ◽  
Lampros Stergioulas ◽  
David Price

Sign in / Sign up

Export Citation Format

Share Document