Future directions in 980-nm pump lasers: submarine deployment to low-cost watt-class terrestrial pumps

Author(s):  
V. Gulgazov ◽  
Gordon S. Jackson ◽  
Kevin M. Lascola ◽  
Jo S. Major ◽  
Ross Parke ◽  
...  
Author(s):  
Guoqiang Sun ◽  
Dawei Rong ◽  
Zhouxiao Li ◽  
Guangshun Sun ◽  
Fan Wu ◽  
...  

Research on molecular targeted therapy of tumors is booming, and novel targeted therapy drugs are constantly emerging. Small molecule targeted compounds, novel targeted therapy drugs, can be administered orally as tablets among other methods, and do not draw upon genes, causing no immune response. It is easily structurally modified to make it more applicable to clinical needs, and convenient to promote due to low cost. It refers to a hotspot in the research of tumor molecular targeted therapy. In the present study, we review the current Food and Drug Administration (FDA)-approved use of small molecule targeted compounds in tumors, summarize the clinical drug resistance problems and mechanisms facing the use of small molecule targeted compounds, and predict the future directions of the evolving field.


Author(s):  
A. Calantropio ◽  
M. P. Deseilligny ◽  
F. Rinaudo ◽  
E. Rupnik

Due to the increasing number of low-cost sensors, widely accessible on the market, and because of the supposed granted correctness of the semi-automatic workflow for 3D reconstruction, highly implemented in the recent commercial software, more and more users operate nowadays without following the rigorousness of classical photogrammetric methods. This behaviour often naively leads to 3D products that lacks metric quality assessment. This paper proposes and analyses an approach that gives the users the possibility to preserve the trustworthiness of the metric information inherent in the 3D model, without sacrificing the automation offered by modern photogrammetry software. At the beginning, the importance of Data Quality Assessment is outlined, together with some recall of photogrammetry best practices. With the purpose of guiding the user through a correct pipeline for a certified 3D model reconstruction, an operative workflow is proposed, focusing on the first part of the object reconstruction steps (tie-points extraction, camera calibration, and relative orientation). A new GUI (Graphical User Interface) developed for the open source MicMac suite is then presented, and a sample dataset is used for the evaluation of the photogrammetric block orientation using statistically obtained quality descriptors. The results and the future directions are then presented and discussed.


2022 ◽  
Vol 327 ◽  
pp. 178-188
Author(s):  
Gan Li ◽  
Min Luo ◽  
Wen Ying Qu ◽  
Hong Xing Lu ◽  
Xiao Gang Hu ◽  
...  

Following the rapid growth of the automotive and communication industries, components with high quality and low cost are eagerly desired in China. Various technologies have been developed in China to meet the demand, while semi-solid processing (SSP) of alloys and composites is one of the most successfully developed and practically applied technologies. The major SSP applied in China is the rheocasting in terms of the Swirled Enthalpy Equilibration Device (SEED) process. In this review, we start with a brief reviewing some common slurry preparation methods and recent innovations of the SEED process. Subsequently, we describe the general situation and some recent examples of successful development and applications of SSP in China. Lastly, the future directions in SSP of alloys and composites are highlighted in this frontier research field at the end of this review.


2012 ◽  
Vol 134 (1) ◽  
Author(s):  
Sushma Madduri ◽  
Bahgat G. Sammakia ◽  
William Infantolino ◽  
Satish C. Chaparala ◽  
Lawrence C. Hughes ◽  
...  

This paper presents a performance study done on a semiconductor laser diode in a moisture condensing environment. Devices with laser diodes are used in a wide variety of electronic applications and in the various climatic conditions. The motivation behind this study is a common environmental exposure, where a device using a laser diode is brought into a relatively humid building from a dry, cold, outside environments. Under such conditions, condensation occurs on various components of the device, including the diode, which could affect the laser output power. Device performance could be affected since the laser diode and the lens are susceptible to degradation due to such repetitive condensation conditions. The test vehicle chosen for this study was an optoelectronic package using a 980 nm laser diode. These are used in products for a broad range of markets, including data communications, aerospace, material processing, scientific, and defense industries [Pliska et al., "Wavelength Stabilized 980nm Uncooled Pump Laser Modules for Erbium-Doped Fiber Amplifiers," Opt. Lasers Eng., 43, pp. 271–289; Righetti, 1996, “Amplifiers Pumped at 980 nm in Submarine Applications,” European Conference on Optical Communication, Vol. 3, pp. 75–80; Pfeiffer et al., 2002, "Reliability of 980 nm Pump Lasers for Submarine, Long-haul Terrestrial, and Low Cost Metro Applications," Optical Fiber Communication Conference and Exhibit, pp. 483–484]. These products may be used in environmental conditions that could result in condensation within the product. A hermetic package could address this concern, but it is an expensive option. Nonhermetic packaging for the laser component could help to lower the cost of these devices; however, these packages have important failure mechanisms that are a potential concern. Prior research reported performance studies conducted on similar packages at elevated temperature, humidity, and power conditions using accelerated tests [Pfeiffer et al., 2002, "Reliability of 980 nm Pump Lasers for Submarine, Long-haul Terrestrial, and Low Cost Metro Applications," Optical Fiber Communication Conference and Exhibit, pp. 483–484; Park and Shin, 2004, “Package Induced Catastrophic Mirror Damage of 980nm GaAs High Power Laser,” Mater. Chem. Phys., 88(2-3), pp. 410–416; Fukuda et al., 1992, “Reliability and Degradation of 980nm InGaAs/GaAs Strained Quantum Well Lasers,” Qual. Reliab. Eng., 8, pp. 283–286]. However, studies conducted that specifically addressed condensation measurements have not been previously reported. Hence, an attempt was made to study package performance with condensation, to address the identified concern for the current package. A test method based on a military standard specification was used for this purpose. Elevated temperature and humidity (without condensation) were found to affect the laser power. These were characterized to isolate the effect of condensation alone. The package was subjected to repetitive condensing cycles and laser output power was recorded as a function of time, temperature and humidity. The variation in laser output power due to condensation was observed and quantified. Results showed a temporary power degradation of approximately 5% with condensation. This was a repeatable effect throughout the test time. Visible water droplets were found in various areas of the package after the test cycle. This could lead to potential failure mechanisms during the device life time.


Catalysts ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 429
Author(s):  
Sami M. Ibn Shamsah

Of all the available resources given to mankind, the sunlight is perhaps the most abundant renewable energy resource, providing more than enough energy on earth to satisfy all the needs of humanity for several hundred years. Therefore, it is transient and sporadic that poses issues with how the energy can be harvested and processed when the sun does not shine. Scientists assume that electro/photoelectrochemical devices used for water splitting into hydrogen and oxygen may have one solution to solve this hindrance. Water electrolysis-generated hydrogen is an optimal energy carrier to store these forms of energy on scalable levels because the energy density is high, and no air pollution or toxic gas is released into the environment after combustion. However, in order to adopt these devices for readily use, they have to be low-cost for manufacturing and operation. It is thus crucial to develop electrocatalysts for water splitting based on low-cost and land-rich elements. In this review, I will summarize current advances in the synthesis of low-cost earth-abundant electrocatalysts for overall water splitting, with a particular focus on how to be linked with photoelectrocatalytic water splitting devices. The major obstacles that persist in designing these devices. The potential future developments in the production of efficient electrocatalysts for water electrolysis are also described.


Author(s):  
M. McGroarty ◽  
S. Giblin ◽  
D. Meldrum ◽  
F. Wetterling

The aim of the study was to perform a preliminary validation of a low cost markerless motion capture system (CAPTURE) against an industry gold standard (Vicon). Measurements of knee valgus and flexion during the performance of a countermovement jump (CMJ) between CAPTURE and Vicon were compared. After correction algorithms were applied to the raw CAPTURE data acceptable levels of accuracy and precision were achieved. The knee flexion angle measured for three trials using Capture deviated by −3.8° ± 3° (left) and 1.7° ± 2.8° (right) compared to Vicon. The findings suggest that low-cost markerless motion capture has potential to provide an objective method for assessing lower limb jump and landing mechanics in an applied sports setting. Furthermore, the outcome of the study warrants the need for future research to examine more fully the potential implications of the use of low-cost markerless motion capture in the evaluation of dynamic movement for injury prevention.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4420
Author(s):  
Tse-Wei Chen ◽  
Palraj Kalimuthu ◽  
Ganesan Anushya ◽  
Shen-Ming Chen ◽  
Vinitha Mariyappan ◽  
...  

Presently, the global energy demand for increasing clean and green energy consumption lies in the development of low-cost, sustainable, economically viable and eco-friendly natured electrochemical conversion process, which is a significant advancement in different morphological types of advanced electrocatalysts to promote their electrocatalytic properties. Herein, we overviewed the recent advancements in oxygen evolution reactions (OERs), including easy electrode fabrication and significant action in water-splitting devices. To date, various synthetic approaches and modern characterization techniques have effectively been anticipated for upgraded OER activity. Moreover, the discussed electrode catalysts have emerged as the most hopeful constituents and received massive appreciation in OER with low overpotential and long-term cyclic stability. This review article broadly confers the recent progress research in OER, the general mechanistic approaches, challenges to enhance the catalytic performances and future directions for the scientific community.


2021 ◽  
Vol 21 (10) ◽  
pp. 4981-5013
Author(s):  
Usama Tahir ◽  
Young Bo Shim ◽  
Muhammad Ahmad Kamran ◽  
Doo-In Kim ◽  
Myung Yung Jeong

Nanofabrication of functional micro/nano-features is becoming increasingly relevant in various electronic, photonic, energy, and biological devices globally. The development of these devices with special characteristics originates from the integration of low-cost and high-quality micro/nano-features into 3D-designs. Great progress has been achieved in recent years for the fabrication of micro/nanostructured based devices by using different imprinting techniques. The key problems are designing techniques/approaches with adequate resolution and consistency with specific materials. By considering optical device fabrication on the large-scale as a context, we discussed the considerations involved in product fabrication processes compatibility, the feature’s functionality, and capability of bottom-up and top-down processes. This review summarizes the recent developments in these areas with an emphasis on established techniques for the micro/nano-fabrication of 3-dimensional structured devices on large-scale. Moreover, numerous potential applications and innovative products based on the large-scale are also demonstrated. Finally, prospects, challenges, and future directions for device fabrication are addressed precisely.


2019 ◽  
Vol 39 (4) ◽  
pp. 179-197 ◽  
Author(s):  
Samira Bagheri ◽  
Amin TermehYousefi ◽  
Javad Mehrmashhadi

AbstractFluorescent carbon dots (CDs) are a new class of carbon nanomaterials and have demonstrated excellent optical properties, good biocompatibility, great aqueous solubility, low cost, and simple synthesis. Since their discovery, various synthesis methods using different precursors were developed, which were mainly classified as top-down and bottom-up approaches. CDs have presented many applications, and this review article mainly focuses on the development of CD-based fluorescent sensors. The sensing mechanisms, sensor design, and sensing properties to various targets are summarized. Broad ranges of detection, including temperature, pH, DNA, antibiotics, cations, cancer cells, and antibiotics, have been discussed. In addition, the challenges and future directions for CDs as sensing materials are also presented.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5201
Author(s):  
Yingfen Wu ◽  
Diane C. Darland ◽  
Julia Xiaojun Zhao

Nanozymes are a class of artificial enzymes that have dimensions in the nanometer range and can be composed of simple metal and metal oxide nanoparticles, metal nanoclusters, dots (both quantum and carbon), nanotubes, nanowires, or multiple metal-organic frameworks (MOFs). They exhibit excellent catalytic activities with low cost, high operational robustness, and a stable shelf-life. More importantly, they are amenable to modifications that can change their surface structures and increase the range of their applications. There are three main classes of nanozymes including the peroxidase-like, the oxidase-like, and the antioxidant nanozymes. Each of these classes catalyzes a specific group of reactions. With the development of nanoscience and nanotechnology, the variety of applications for nanozymes in diverse fields has expanded dramatically, with the most popular applications in biosensing. Nanozyme-based novel biosensors have been designed to detect ions, small molecules, nucleic acids, proteins, and cancer cells. The current review focuses on the catalytic mechanism of nanozymes, their application in biosensing, and the identification of future directions for the field.


Sign in / Sign up

Export Citation Format

Share Document